PaddleOCR/ppocr/postprocess/db_postprocess.py

144 lines
4.9 KiB
Python
Raw Normal View History

2020-05-10 16:26:57 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import cv2
from shapely.geometry import Polygon
import pyclipper
class DBPostProcess(object):
"""
The post process for Differentiable Binarization (DB).
"""
2020-10-13 17:13:33 +08:00
def __init__(self,
thresh=0.3,
box_thresh=0.7,
max_candidates=1000,
unclip_ratio=2.0,
**kwargs):
self.thresh = thresh
self.box_thresh = box_thresh
self.max_candidates = max_candidates
self.unclip_ratio = unclip_ratio
2020-05-10 16:26:57 +08:00
self.min_size = 3
def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
'''
_bitmap: single map with shape (1, H, W),
whose values are binarized as {0, 1}
'''
bitmap = _bitmap
height, width = bitmap.shape
2020-05-25 16:29:20 +08:00
outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
2020-05-14 13:49:28 +08:00
if len(outs) == 3:
img, contours, _ = outs[0], outs[1], outs[2]
elif len(outs) == 2:
contours, _ = outs[0], outs[1]
2020-05-10 16:26:57 +08:00
num_contours = min(len(contours), self.max_candidates)
2020-10-13 17:13:33 +08:00
boxes = []
scores = []
2020-05-10 16:26:57 +08:00
for index in range(num_contours):
contour = contours[index]
points, sside = self.get_mini_boxes(contour)
if sside < self.min_size:
continue
points = np.array(points)
score = self.box_score_fast(pred, points.reshape(-1, 2))
if self.box_thresh > score:
continue
box = self.unclip(points).reshape(-1, 1, 2)
box, sside = self.get_mini_boxes(box)
if sside < self.min_size + 2:
continue
box = np.array(box)
box[:, 0] = np.clip(
np.round(box[:, 0] / width * dest_width), 0, dest_width)
box[:, 1] = np.clip(
np.round(box[:, 1] / height * dest_height), 0, dest_height)
2020-10-13 17:13:33 +08:00
boxes.append(box.astype(np.int16))
scores.append(score)
return np.array(boxes, dtype=np.int16), scores
2020-05-10 16:26:57 +08:00
2020-05-25 16:29:20 +08:00
def unclip(self, box):
unclip_ratio = self.unclip_ratio
2020-05-10 16:26:57 +08:00
poly = Polygon(box)
distance = poly.area * unclip_ratio / poly.length
offset = pyclipper.PyclipperOffset()
offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
expanded = np.array(offset.Execute(distance))
return expanded
def get_mini_boxes(self, contour):
bounding_box = cv2.minAreaRect(contour)
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
index_1, index_2, index_3, index_4 = 0, 1, 2, 3
if points[1][1] > points[0][1]:
index_1 = 0
index_4 = 1
else:
index_1 = 1
index_4 = 0
if points[3][1] > points[2][1]:
index_2 = 2
index_3 = 3
else:
index_2 = 3
index_3 = 2
box = [
points[index_1], points[index_2], points[index_3], points[index_4]
]
return box, min(bounding_box[1])
def box_score_fast(self, bitmap, _box):
h, w = bitmap.shape[:2]
box = _box.copy()
xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
box[:, 0] = box[:, 0] - xmin
box[:, 1] = box[:, 1] - ymin
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
2020-10-13 17:13:33 +08:00
def __call__(self, pred, shape_list):
pred = pred.numpy()[:, 0, :, :]
2020-05-10 16:26:57 +08:00
segmentation = pred > self.thresh
boxes_batch = []
for batch_index in range(pred.shape[0]):
2020-10-13 17:13:33 +08:00
height, width = shape_list[batch_index]
boxes, scores = self.boxes_from_bitmap(
2020-05-10 16:26:57 +08:00
pred[batch_index], segmentation[batch_index], width, height)
2020-10-13 17:13:33 +08:00
boxes_batch.append({'points': boxes})
2020-05-10 16:26:57 +08:00
return boxes_batch