2020-07-07 15:40:39 +08:00
|
|
|
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
|
2020-07-07 18:48:10 +08:00
|
|
|
#include "db_post_process.h" // NOLINT
|
2020-07-07 15:40:39 +08:00
|
|
|
#include <algorithm>
|
|
|
|
#include <utility>
|
|
|
|
|
2020-07-07 18:48:10 +08:00
|
|
|
void GetContourArea(std::vector<std::vector<float>> box, float unclip_ratio,
|
|
|
|
float &distance) {
|
2020-07-07 15:40:39 +08:00
|
|
|
int pts_num = 4;
|
|
|
|
float area = 0.0f;
|
|
|
|
float dist = 0.0f;
|
|
|
|
for (int i = 0; i < pts_num; i++) {
|
|
|
|
area += box[i][0] * box[(i + 1) % pts_num][1] -
|
|
|
|
box[i][1] * box[(i + 1) % pts_num][0];
|
|
|
|
dist += sqrtf((box[i][0] - box[(i + 1) % pts_num][0]) *
|
|
|
|
(box[i][0] - box[(i + 1) % pts_num][0]) +
|
|
|
|
(box[i][1] - box[(i + 1) % pts_num][1]) *
|
|
|
|
(box[i][1] - box[(i + 1) % pts_num][1]));
|
|
|
|
}
|
|
|
|
area = fabs(float(area / 2.0));
|
|
|
|
|
|
|
|
distance = area * unclip_ratio / dist;
|
|
|
|
}
|
|
|
|
|
|
|
|
cv::RotatedRect Unclip(std::vector<std::vector<float>> box,
|
|
|
|
float unclip_ratio) {
|
|
|
|
float distance = 1.0;
|
|
|
|
|
|
|
|
GetContourArea(box, unclip_ratio, distance);
|
|
|
|
|
|
|
|
ClipperLib::ClipperOffset offset;
|
|
|
|
ClipperLib::Path p;
|
|
|
|
p << ClipperLib::IntPoint(int(box[0][0]), int(box[0][1]))
|
|
|
|
<< ClipperLib::IntPoint(int(box[1][0]), int(box[1][1]))
|
|
|
|
<< ClipperLib::IntPoint(int(box[2][0]), int(box[2][1]))
|
|
|
|
<< ClipperLib::IntPoint(int(box[3][0]), int(box[3][1]));
|
|
|
|
offset.AddPath(p, ClipperLib::jtRound, ClipperLib::etClosedPolygon);
|
|
|
|
|
|
|
|
ClipperLib::Paths soln;
|
|
|
|
offset.Execute(soln, distance);
|
|
|
|
std::vector<cv::Point2f> points;
|
|
|
|
|
|
|
|
for (int j = 0; j < soln.size(); j++) {
|
|
|
|
for (int i = 0; i < soln[soln.size() - 1].size(); i++) {
|
|
|
|
points.emplace_back(soln[j][i].X, soln[j][i].Y);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
cv::RotatedRect res = cv::minAreaRect(points);
|
|
|
|
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<std::vector<float>> Mat2Vector(cv::Mat mat) {
|
|
|
|
std::vector<std::vector<float>> img_vec;
|
|
|
|
std::vector<float> tmp;
|
|
|
|
|
|
|
|
for (int i = 0; i < mat.rows; ++i) {
|
|
|
|
tmp.clear();
|
|
|
|
for (int j = 0; j < mat.cols; ++j) {
|
|
|
|
tmp.push_back(mat.at<float>(i, j));
|
|
|
|
}
|
|
|
|
img_vec.push_back(tmp);
|
|
|
|
}
|
|
|
|
return img_vec;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool XsortFp32(std::vector<float> a, std::vector<float> b) {
|
2020-07-07 18:48:10 +08:00
|
|
|
if (a[0] != b[0])
|
|
|
|
return a[0] < b[0];
|
2020-07-07 15:40:39 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool XsortInt(std::vector<int> a, std::vector<int> b) {
|
2020-07-07 18:48:10 +08:00
|
|
|
if (a[0] != b[0])
|
|
|
|
return a[0] < b[0];
|
2020-07-07 15:40:39 +08:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2020-07-07 18:48:10 +08:00
|
|
|
std::vector<std::vector<int>>
|
|
|
|
OrderPointsClockwise(std::vector<std::vector<int>> pts) {
|
2020-07-07 15:40:39 +08:00
|
|
|
std::vector<std::vector<int>> box = pts;
|
|
|
|
std::sort(box.begin(), box.end(), XsortInt);
|
|
|
|
|
|
|
|
std::vector<std::vector<int>> leftmost = {box[0], box[1]};
|
|
|
|
std::vector<std::vector<int>> rightmost = {box[2], box[3]};
|
|
|
|
|
2020-07-07 18:48:10 +08:00
|
|
|
if (leftmost[0][1] > leftmost[1][1])
|
|
|
|
std::swap(leftmost[0], leftmost[1]);
|
2020-07-07 15:40:39 +08:00
|
|
|
|
2020-07-07 18:48:10 +08:00
|
|
|
if (rightmost[0][1] > rightmost[1][1])
|
|
|
|
std::swap(rightmost[0], rightmost[1]);
|
2020-07-07 15:40:39 +08:00
|
|
|
|
2020-07-07 18:48:10 +08:00
|
|
|
std::vector<std::vector<int>> rect = {leftmost[0], rightmost[0], rightmost[1],
|
|
|
|
leftmost[1]};
|
2020-07-07 15:40:39 +08:00
|
|
|
return rect;
|
|
|
|
}
|
|
|
|
|
2020-07-07 18:48:10 +08:00
|
|
|
std::vector<std::vector<float>> GetMiniBoxes(cv::RotatedRect box, float &ssid) {
|
|
|
|
ssid = std::max(box.size.width, box.size.height);
|
2020-07-07 15:40:39 +08:00
|
|
|
|
|
|
|
cv::Mat points;
|
|
|
|
cv::boxPoints(box, points);
|
|
|
|
|
|
|
|
auto array = Mat2Vector(points);
|
|
|
|
std::sort(array.begin(), array.end(), XsortFp32);
|
|
|
|
|
|
|
|
std::vector<float> idx1 = array[0], idx2 = array[1], idx3 = array[2],
|
|
|
|
idx4 = array[3];
|
|
|
|
if (array[3][1] <= array[2][1]) {
|
|
|
|
idx2 = array[3];
|
|
|
|
idx3 = array[2];
|
|
|
|
} else {
|
|
|
|
idx2 = array[2];
|
|
|
|
idx3 = array[3];
|
|
|
|
}
|
|
|
|
if (array[1][1] <= array[0][1]) {
|
|
|
|
idx1 = array[1];
|
|
|
|
idx4 = array[0];
|
|
|
|
} else {
|
|
|
|
idx1 = array[0];
|
|
|
|
idx4 = array[1];
|
|
|
|
}
|
|
|
|
|
|
|
|
array[0] = idx1;
|
|
|
|
array[1] = idx2;
|
|
|
|
array[2] = idx3;
|
|
|
|
array[3] = idx4;
|
|
|
|
|
|
|
|
return array;
|
|
|
|
}
|
|
|
|
|
|
|
|
float BoxScoreFast(std::vector<std::vector<float>> box_array, cv::Mat pred) {
|
|
|
|
auto array = box_array;
|
|
|
|
int width = pred.cols;
|
|
|
|
int height = pred.rows;
|
|
|
|
|
|
|
|
float box_x[4] = {array[0][0], array[1][0], array[2][0], array[3][0]};
|
|
|
|
float box_y[4] = {array[0][1], array[1][1], array[2][1], array[3][1]};
|
|
|
|
|
2020-07-07 18:48:10 +08:00
|
|
|
int xmin = clamp(int(std::floorf(*(std::min_element(box_x, box_x + 4)))), 0,
|
|
|
|
width - 1);
|
|
|
|
int xmax = clamp(int(std::ceilf(*(std::max_element(box_x, box_x + 4)))), 0,
|
|
|
|
width - 1);
|
|
|
|
int ymin = clamp(int(std::floorf(*(std::min_element(box_y, box_y + 4)))), 0,
|
|
|
|
height - 1);
|
|
|
|
int ymax = clamp(int(std::ceilf(*(std::max_element(box_y, box_y + 4)))), 0,
|
|
|
|
height - 1);
|
2020-07-07 15:40:39 +08:00
|
|
|
|
|
|
|
cv::Mat mask;
|
|
|
|
mask = cv::Mat::zeros(ymax - ymin + 1, xmax - xmin + 1, CV_8UC1);
|
|
|
|
|
|
|
|
cv::Point root_point[4];
|
|
|
|
root_point[0] = cv::Point(int(array[0][0]) - xmin, int(array[0][1]) - ymin);
|
|
|
|
root_point[1] = cv::Point(int(array[1][0]) - xmin, int(array[1][1]) - ymin);
|
|
|
|
root_point[2] = cv::Point(int(array[2][0]) - xmin, int(array[2][1]) - ymin);
|
|
|
|
root_point[3] = cv::Point(int(array[3][0]) - xmin, int(array[3][1]) - ymin);
|
2020-07-07 18:48:10 +08:00
|
|
|
const cv::Point *ppt[1] = {root_point};
|
2020-07-07 15:40:39 +08:00
|
|
|
int npt[] = {4};
|
|
|
|
cv::fillPoly(mask, ppt, npt, 1, cv::Scalar(1));
|
|
|
|
|
|
|
|
cv::Mat croppedImg;
|
|
|
|
pred(cv::Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1))
|
|
|
|
.copyTo(croppedImg);
|
|
|
|
|
|
|
|
auto score = cv::mean(croppedImg, mask)[0];
|
|
|
|
return score;
|
|
|
|
}
|
|
|
|
|
2020-07-07 18:48:10 +08:00
|
|
|
std::vector<std::vector<std::vector<int>>>
|
|
|
|
BoxesFromBitmap(const cv::Mat pred, const cv::Mat bitmap,
|
|
|
|
std::map<std::string, double> Config) {
|
2020-07-07 15:40:39 +08:00
|
|
|
const int min_size = 3;
|
|
|
|
const int max_candidates = 1000;
|
|
|
|
const float box_thresh = float(Config["det_db_box_thresh"]);
|
|
|
|
const float unclip_ratio = float(Config["det_db_unclip_ratio"]);
|
|
|
|
|
|
|
|
int width = bitmap.cols;
|
|
|
|
int height = bitmap.rows;
|
|
|
|
|
|
|
|
std::vector<std::vector<cv::Point>> contours;
|
|
|
|
std::vector<cv::Vec4i> hierarchy;
|
|
|
|
|
2020-07-07 18:48:10 +08:00
|
|
|
cv::findContours(bitmap, contours, hierarchy, cv::RETR_LIST,
|
|
|
|
cv::CHAIN_APPROX_SIMPLE);
|
2020-07-07 15:40:39 +08:00
|
|
|
|
|
|
|
int num_contours =
|
|
|
|
contours.size() >= max_candidates ? max_candidates : contours.size();
|
|
|
|
|
|
|
|
std::vector<std::vector<std::vector<int>>> boxes;
|
|
|
|
|
|
|
|
for (int i = 0; i < num_contours; i++) {
|
|
|
|
float ssid;
|
|
|
|
cv::RotatedRect box = cv::minAreaRect(contours[i]);
|
|
|
|
auto array = GetMiniBoxes(box, ssid);
|
|
|
|
|
|
|
|
auto box_for_unclip = array;
|
|
|
|
// end get_mini_box
|
|
|
|
|
|
|
|
if (ssid < min_size) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
float score;
|
|
|
|
score = BoxScoreFast(array, pred);
|
|
|
|
// end box_score_fast
|
2020-07-07 18:48:10 +08:00
|
|
|
if (score < box_thresh)
|
|
|
|
continue;
|
2020-07-07 15:40:39 +08:00
|
|
|
|
|
|
|
// start for unclip
|
|
|
|
cv::RotatedRect points = Unclip(box_for_unclip, unclip_ratio);
|
|
|
|
// end for unclip
|
|
|
|
|
|
|
|
cv::RotatedRect clipbox = points;
|
|
|
|
auto cliparray = GetMiniBoxes(clipbox, ssid);
|
|
|
|
|
2020-07-07 18:48:10 +08:00
|
|
|
if (ssid < min_size + 2)
|
|
|
|
continue;
|
2020-07-07 15:40:39 +08:00
|
|
|
|
|
|
|
int dest_width = pred.cols;
|
|
|
|
int dest_height = pred.rows;
|
|
|
|
std::vector<std::vector<int>> intcliparray;
|
|
|
|
|
|
|
|
for (int num_pt = 0; num_pt < 4; num_pt++) {
|
2020-07-07 18:48:10 +08:00
|
|
|
std::vector<int> a{int(clamp(roundf(cliparray[num_pt][0] / float(width) *
|
|
|
|
float(dest_width)),
|
|
|
|
float(0), float(dest_width))),
|
|
|
|
int(clamp(roundf(cliparray[num_pt][1] / float(height) *
|
|
|
|
float(dest_height)),
|
|
|
|
float(0), float(dest_height)))};
|
2020-07-07 15:40:39 +08:00
|
|
|
intcliparray.push_back(a);
|
|
|
|
}
|
|
|
|
boxes.push_back(intcliparray);
|
|
|
|
|
2020-07-07 18:48:10 +08:00
|
|
|
} // end for
|
2020-07-07 15:40:39 +08:00
|
|
|
return boxes;
|
|
|
|
}
|
|
|
|
|
2020-07-07 18:48:10 +08:00
|
|
|
std::vector<std::vector<std::vector<int>>>
|
|
|
|
FilterTagDetRes(std::vector<std::vector<std::vector<int>>> boxes, float ratio_h,
|
|
|
|
float ratio_w, cv::Mat srcimg) {
|
2020-07-07 15:40:39 +08:00
|
|
|
int oriimg_h = srcimg.rows;
|
|
|
|
int oriimg_w = srcimg.cols;
|
|
|
|
|
|
|
|
std::vector<std::vector<std::vector<int>>> root_points;
|
|
|
|
for (int n = 0; n < boxes.size(); n++) {
|
|
|
|
boxes[n] = OrderPointsClockwise(boxes[n]);
|
|
|
|
for (int m = 0; m < boxes[0].size(); m++) {
|
|
|
|
boxes[n][m][0] /= ratio_w;
|
|
|
|
boxes[n][m][1] /= ratio_h;
|
|
|
|
|
|
|
|
boxes[n][m][0] = int(std::min(std::max(boxes[n][m][0], 0), oriimg_w - 1));
|
|
|
|
boxes[n][m][1] = int(std::min(std::max(boxes[n][m][1], 0), oriimg_h - 1));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int n = 0; n < boxes.size(); n++) {
|
|
|
|
int rect_width, rect_height;
|
|
|
|
rect_width = int(sqrt(pow(boxes[n][0][0] - boxes[n][1][0], 2) +
|
|
|
|
pow(boxes[n][0][1] - boxes[n][1][1], 2)));
|
|
|
|
rect_height = int(sqrt(pow(boxes[n][0][0] - boxes[n][3][0], 2) +
|
|
|
|
pow(boxes[n][0][1] - boxes[n][3][1], 2)));
|
2020-07-07 18:48:10 +08:00
|
|
|
if (rect_width <= 10 || rect_height <= 10)
|
|
|
|
continue;
|
2020-07-07 15:40:39 +08:00
|
|
|
root_points.push_back(boxes[n]);
|
|
|
|
}
|
|
|
|
return root_points;
|
|
|
|
}
|