add inference to serving model tool

This commit is contained in:
wangjiawei04 2020-09-23 17:45:37 +08:00
parent e53c427330
commit 0005f4d171
17 changed files with 189 additions and 224 deletions

View File

@ -22,9 +22,9 @@ import time
import re
import base64
from tools.infer.predict_cls import TextClassifier
import tools.infer.utility as utility
from params import read_params
global_args = utility.parse_args()
global_args = read_params()
if global_args.use_gpu:
from paddle_serving_server_gpu.web_service import WebService
else:

View File

@ -22,9 +22,9 @@ import time
import re
import base64
from tools.infer.predict_cls import TextClassifier
import tools.infer.utility as utility
from params import read_params
global_args = utility.parse_args()
global_args = read_params()
if global_args.use_gpu:
from paddle_serving_server_gpu.web_service import WebService
else:

View File

@ -21,9 +21,9 @@ import time
import re
import base64
from tools.infer.predict_det import TextDetector
import tools.infer.utility as utility
from params import read_params
global_args = utility.parse_args()
global_args = read_params()
if global_args.use_gpu:
from paddle_serving_server_gpu.web_service import WebService
else:

View File

@ -21,9 +21,9 @@ import time
import re
import base64
from tools.infer.predict_det import TextDetector
import tools.infer.utility as utility
from params import read_params
global_args = utility.parse_args()
global_args = read_params()
if global_args.use_gpu:
from paddle_serving_server_gpu.web_service import WebService
else:

View File

@ -24,12 +24,13 @@ import base64
from clas_local_server import TextClassifierHelper
from det_local_server import TextDetectorHelper
from rec_local_server import TextRecognizerHelper
import tools.infer.utility as utility
from tools.infer.predict_system import TextSystem, sorted_boxes
from paddle_serving_app.local_predict import Debugger
import copy
from params import read_params
global_args = read_params()
global_args = utility.parse_args()
if global_args.use_gpu:
from paddle_serving_server_gpu.web_service import WebService
else:
@ -84,8 +85,7 @@ class TextSystemHelper(TextSystem):
class OCRService(WebService):
def init_rec(self):
args = utility.parse_args()
self.text_system = TextSystemHelper(args)
self.text_system = TextSystemHelper(global_args)
def preprocess(self, feed=[], fetch=[]):
# TODO: to handle batch rec images

View File

@ -24,11 +24,11 @@ import base64
from clas_rpc_server import TextClassifierHelper
from det_rpc_server import TextDetectorHelper
from rec_rpc_server import TextRecognizerHelper
import tools.infer.utility as utility
from tools.infer.predict_system import TextSystem, sorted_boxes
import copy
from params import read_params
global_args = utility.parse_args()
global_args = read_params()
if global_args.use_gpu:
from paddle_serving_server_gpu.web_service import WebService
else:
@ -87,8 +87,7 @@ class TextSystemHelper(TextSystem):
class OCRService(WebService):
def init_rec(self):
args = utility.parse_args()
self.text_system = TextSystemHelper(args)
self.text_system = TextSystemHelper(global_args)
def preprocess(self, feed=[], fetch=[]):
# TODO: to handle batch rec images

View File

@ -0,0 +1,50 @@
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
class Config(object):
pass
def read_params():
cfg = Config()
#use gpu
cfg.use_gpu = False
cfg.use_pdserving = True
#params for text detector
cfg.det_algorithm = "DB"
cfg.det_model_dir = "./det_mv_server/"
cfg.det_max_side_len = 960
#DB parmas
cfg.det_db_thresh =0.3
cfg.det_db_box_thresh =0.5
cfg.det_db_unclip_ratio =2.0
#EAST parmas
cfg.det_east_score_thresh = 0.8
cfg.det_east_cover_thresh = 0.1
cfg.det_east_nms_thresh = 0.2
#params for text recognizer
cfg.rec_algorithm = "CRNN"
cfg.rec_model_dir = "./ocr_rec_server/"
cfg.rec_image_shape = "3, 32, 320"
cfg.rec_char_type = 'ch'
cfg.rec_batch_num = 30
cfg.max_text_length = 25
cfg.rec_char_dict_path = "./ppocr_keys_v1.txt"
cfg.use_space_char = True
#params for text classifier
cfg.use_angle_cls = True
cfg.cls_model_dir = "./ocr_clas_server/"
cfg.cls_image_shape = "3, 48, 192"
cfg.label_list = ['0', '180']
cfg.cls_batch_num = 30
cfg.cls_thresh = 0.9
return cfg

View File

@ -22,9 +22,10 @@ import time
import re
import base64
from tools.infer.predict_rec import TextRecognizer
import tools.infer.utility as utility
from params import read_params
global_args = read_params()
global_args = utility.parse_args()
if global_args.use_gpu:
from paddle_serving_server_gpu.web_service import WebService
else:

View File

@ -22,9 +22,9 @@ import time
import re
import base64
from tools.infer.predict_rec import TextRecognizer
import tools.infer.utility as utility
from params import read_params
global_args = utility.parse_args()
global_args = read_params()
if global_args.use_gpu:
from paddle_serving_server_gpu.web_service import WebService
else:

View File

@ -10,117 +10,100 @@
## 一、训练模型转Serving模型
### 检测模型转Serving模型
在前序文档 [基于Python预测引擎推理](./inference.md) 中我们提供了如何把训练的checkpoint转换成Paddle模型。Paddle模型通常由一个文件夹构成内含模型结构描述文件`model`和模型参数文件`params`。Serving模型由两个文件夹构成用于存放客户端和服务端的配置。
下载超轻量级中文检测模型
我们以`ch_rec_r34_vd_crnn`模型作为例子,下载链接在
```
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar && tar xf ./ch_lite/ch_det_mv3_db.tar -C ./ch_lite/
wget --no-check-certificate https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar
tar xf ch_rec_r34_vd_crnn_infer.tar
```
上述模型是以MobileNetV3为backbone训练的DB算法将训练好的模型转换成Serving模型只需要运行如下命令
因此我们按照Serving模型转换教程运行下列python文件。
```
python tools/inference_to_serving.py --model_dir ch_rec_r34_vd_crnn
```
最终会在`serving_client_dir`和`serving_server_dir`生成客户端和服务端的模型配置。其中`serving_server_dir`和`serving_client_dir`的名字可以自定义。最终文件结构如下
```
# -c后面设置训练算法的yml配置文件
# -o配置可选参数
# Global.checkpoints参数设置待转换的训练模型地址不用添加文件后缀.pdmodel.pdopt或.pdparams。
# Global.save_inference_dir参数设置转换的模型将保存的地址。
python tools/export_serving_model.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=./ch_lite/det_mv3_db/best_accuracy Global.save_inference_dir=./inference/det_db/
```
转Serving模型时使用的配置文件和训练时使用的配置文件相同。另外还需要设置配置文件中的`Global.checkpoints`、`Global.save_inference_dir`参数。 其中`Global.checkpoints`指向训练中保存的模型参数文件,`Global.save_inference_dir`是生成的inference模型要保存的目录。 转换成功后,在`save_inference_dir`目录下有两个文件:
```
inference/det_db/
├── serving_client_dir # 客户端配置文件夹
└── serving_server_dir # 服务端配置文件夹
```
### 识别模型转Serving模型
下载超轻量中文识别模型:
```
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar && tar xf ./ch_lite/ch_rec_mv3_crnn.tar -C ./ch_lite/
```
识别模型转inference模型与检测的方式相同如下
```
# -c后面设置训练算法的yml配置文件
# -o配置可选参数
# Global.checkpoints参数设置待转换的训练模型地址不用添加文件后缀.pdmodel.pdopt或.pdparams。
# Global.save_inference_dir参数设置转换的模型将保存的地址。
python3 tools/export_serving_model.py -c configs/rec/rec_chinese_lite_train.yml -o Global.checkpoints=./ch_lite/rec_mv3_crnn/best_accuracy \
Global.save_inference_dir=./inference/rec_crnn/
```
**注意:**如果您是在自己的数据集上训练的模型,并且调整了中文字符的字典文件,请注意修改配置文件中的`character_dict_path`是否是所需要的字典文件。
转换成功后,在目录下有两个文件:
```
/inference/rec_crnn/
/ch_rec_r34_vd_crnn/
├── serving_client_dir # 客户端配置文件夹
└── serving_server_dir # 服务端配置文件夹
```
### 方向分类模型转Serving模型
下载方向分类模型:
```
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile-v1.1.cls_pre.tar && tar xf ./ch_lite/ch_ppocr_mobile-v1.1.cls_pre.tar -C ./ch_lite/
```
方向分类模型转inference模型与检测的方式相同如下
```
# -c后面设置训练算法的yml配置文件
# -o配置可选参数
# Global.checkpoints参数设置待转换的训练模型地址不用添加文件后缀.pdmodel.pdopt或.pdparams。
# Global.save_inference_dir参数设置转换的模型将保存的地址。
python3 tools/export_serving_model.py -c configs/cls/cls_mv3.yml -o Global.checkpoints=./ch_lite/cls_model/best_accuracy \
Global.save_inference_dir=./inference/cls/
```
转换成功后,在目录下有两个文件:
```
/inference/cls/
├── serving_client_dir # 客户端配置文件夹
└── serving_server_dir # 服务端配置文件夹
```
在接下来的教程中我们将给出推理的demo模型下载链接。
```
wget --no-check-certificate https://paddleocr.bj.bcebos.com/deploy/pdserving/ocr_pdserving_suite.tar.gz
tar zxf ocr_pdserving_suite.tar.gz
```
## 二、文本检测模型Serving推理
文本检测模型推理默认使用DB模型的配置参数。当不使用DB模型时在推理时需要通过传入相应的参数进行算法适配细节参考下文。
启动服务可以根据实际需求选择启动`标准版`或者`快速版`,两种方式的对比如下表:
与本地预测不同的是Serving预测需要一个客户端和一个服务端因此接下来的教程都是两行代码。所有的
|版本|特点|适用场景|
|-|-|-|
|标准版|稳定性高,分布式部署|适用于吞吐量大,需要跨机房部署的情况|
|快速版|部署方便,预测速度快|适用于对预测速度要求高迭代速度快的场景Windows用户只能选择快速版|
接下来的命令中我们会指定快速版和标准版的命令。需要说明的是标准版只能用Linux平台快速版可以支持Linux/Windows。
文本检测模型推理默认使用DB模型的配置参数识别默认为CRNN。
配置文件在`params.py`中,我们贴出配置部分,如果需要做改动,也在这个文件内部进行修改。
```
def read_params():
cfg = Config()
#use gpu
cfg.use_gpu = False # 是否使用GPU
cfg.use_pdserving = True # 是否使用paddleserving必须为True
#params for text detector
cfg.det_algorithm = "DB" # 检测算法, DB/EAST等
cfg.det_model_dir = "./det_mv_server/" # 检测算法模型路径
cfg.det_max_side_len = 960
#DB params
cfg.det_db_thresh =0.3
cfg.det_db_box_thresh =0.5
cfg.det_db_unclip_ratio =2.0
#EAST params
cfg.det_east_score_thresh = 0.8
cfg.det_east_cover_thresh = 0.1
cfg.det_east_nms_thresh = 0.2
#params for text recognizer
cfg.rec_algorithm = "CRNN" # 识别算法, CRNN/RARE等
cfg.rec_model_dir = "./ocr_rec_server/" # 识别算法模型路径
cfg.rec_image_shape = "3, 32, 320"
cfg.rec_char_type = 'ch'
cfg.rec_batch_num = 30
cfg.max_text_length = 25
cfg.rec_char_dict_path = "./ppocr_keys_v1.txt" # 识别算法字典文件
cfg.use_space_char = True
#params for text classifier
cfg.use_angle_cls = True # 是否启用分类算法
cfg.cls_model_dir = "./ocr_clas_server/" # 分类算法模型路径
cfg.cls_image_shape = "3, 48, 192"
cfg.label_list = ['0', '180']
cfg.cls_batch_num = 30
cfg.cls_thresh = 0.9
return cfg
```
与本地预测不同的是Serving预测需要一个客户端和一个服务端因此接下来的教程都是两行代码。
在正式执行服务端启动命令之前先export PYTHONPATH到工程主目录下。
```
export PYTHONPATH=$PWD:$PYTHONPATH
cd deploy/pdserving
```
### 1. 超轻量中文检测模型推理
超轻量中文检测模型推理,可以执行如下命令启动服务端:
```
#根据环境只需要启动其中一个就可以
python det_rpc_server.py --use_pdserving True --det_model_dir det_mv_server #标准版Linux用户
python det_local_server.py --use_pdserving True --det_model_dir det_mv_server #快速版Windows/Linux用户
python det_rpc_server.py #标准版Linux用户
python det_local_server.py #快速版Windows/Linux用户
```
如果需要使用CPU版本还需增加 `--use_gpu False`
客户端
@ -129,23 +112,8 @@ python det_web_client.py
```
Serving的推测和本地预测不同点在于客户端发送请求到服务端服务端需要检测到文字框之后返回框的坐标此处没有后处理的图片只能看到坐标值。
### 2. DB文本检测模型推理
首先将DB文本检测训练过程中保存的模型转换成inference model。以基于Resnet50_vd骨干网络在ICDAR2015英文数据集训练的模型为例[模型下载地址](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)),可以使用如下命令进行转换:
```
# -c后面设置训练算法的yml配置文件
# Global.checkpoints参数设置待转换的训练模型地址不用添加文件后缀.pdmodel.pdopt或.pdparams。
# Global.save_inference_dir参数设置转换的模型将保存的地址。
python3 tools/export_serving_model.py -c configs/det/det_r50_vd_db.yml -o Global.checkpoints="./models/det_r50_vd_db/best_accuracy" Global.save_inference_dir="./inference/det_db"
```
经过转换之后,会在`./inference/det_db` 目录下出现`serving_server_dir`和`serving_client_dir`,然后指定`det_model_dir` 。
## 三、文本识别模型Serving推理
下面将介绍超轻量中文识别模型推理、基于CTC损失的识别模型推理和基于Attention损失的识别模型推理。对于中文文本识别建议优先选择基于CTC损失的识别模型实践中也发现基于Attention损失的效果不如基于CTC损失的识别模型。此外如果训练时修改了文本的字典请参考下面的自定义文本识别字典的推理。
@ -153,11 +121,11 @@ python3 tools/export_serving_model.py -c configs/det/det_r50_vd_db.yml -o Global
### 1. 超轻量中文识别模型推理
超轻量中文识别模型推理,可以执行如下命令启动服务端:
需要注意params.py中的`--use_gpu`的值
```
#根据环境只需要启动其中一个就可以
python rec_rpc_server.py --use_pdserving True --rec_model_dir ocr_rec_server #标准版Linux用户
python rec_local_server.py --use_pdserving True --rec_model_dir ocr_rec_server #快速版Windows/Linux用户
python rec_rpc_server.py #标准版Linux用户
python rec_local_server.py #快速版Windows/Linux用户
```
如果需要使用CPU版本还需增加 `--use_gpu False`
@ -186,13 +154,12 @@ python rec_web_client.py
### 1. 方向分类模型推理
方向分类模型推理, 可以执行如下命令启动服务端:
需要注意params.py中的`--use_gpu`的值
```
#根据环境只需要启动其中一个就可以
python clas_rpc_server.py --use_pdserving True --cls_model_dir ocr_clas_server #标准版Linux用户
python clas_local_server.py --use_pdserving True --cls_model_dir ocr_clas_server #快速版Windows/Linux用户
python clas_rpc_server.py #标准版Linux用户
python clas_local_server.py #快速版Windows/Linux用户
```
如果需要使用CPU版本还需增加 `--use_gpu False`
客户端
@ -216,20 +183,20 @@ python rec_web_client.py
在执行预测时,需要通过参数`image_dir`指定单张图像或者图像集合的路径、参数`det_model_dir`,`cls_model_dir`和`rec_model_dir`分别指定检测方向分类和识别的inference模型路径。参数`use_angle_cls`用于控制是否启用方向分类模型。与本地预测不同的是,为了减少网络传输耗时,可视化识别结果目前不做处理,用户收到的是推理得到的文字字段。
执行如下命令启动服务端:
需要注意params.py中的`--use_gpu`的值
```
#标准版Linux用户
#GPU用户
python -m paddle_serving_server_gpu.serve --model det_mv_server --port 9293 --gpu_id 0
python -m paddle_serving_server_gpu.serve --model ocr_cls_server --port 9294 --gpu_id 0
python ocr_rpc_server.py --use_pdserving True --use_gpu True --rec_model_dir ocr_rec_server
python ocr_rpc_server.py
#CPU用户
python -m paddle_serving_server.serve --model det_mv_server --port 9293
python -m paddle_serving_server.serve --model ocr_cls_server --port 9294
python ocr_rpc_server.py --use_pdserving True --use_gpu False --rec_model_dir ocr_rec_server
python ocr_rpc_server.py
#快速版Windows/Linux用户
python ocr_local_server.py --use_gpu False --use_pdserving True --rec_model_dir ocr_rec_server/ --det_model_dir det_mv_server/ --cls_model_dir ocr_clas_server/ --rec_char_dict_path ppocr_keys_v1.txt --use_angle_cls True
python ocr_local_server.py
```
客户端

View File

@ -21,12 +21,10 @@ from ppocr.utils.utility import initial_logger, check_and_read_gif
logger = initial_logger()
import tools.infer.utility as utility
args = utility.parse_args()
if args.use_pdserving is False:
from .data_augment import AugmentData
from .random_crop_data import RandomCropData
from .make_shrink_map import MakeShrinkMap
from .make_border_map import MakeBorderMap
from .data_augment import AugmentData
from .random_crop_data import RandomCropData
from .make_shrink_map import MakeShrinkMap
from .make_border_map import MakeBorderMap
class DBProcessTrain(object):

View File

@ -1,78 +0,0 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
def set_paddle_flags(**kwargs):
for key, value in kwargs.items():
if os.environ.get(key, None) is None:
os.environ[key] = str(value)
# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
# not take any effect.
set_paddle_flags(
FLAGS_eager_delete_tensor_gb=0, # enable GC to save memory
)
import program
from paddle import fluid
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.utils.save_load import init_model
from paddle_serving_client.io import save_model
def main():
startup_prog, eval_program, place, config, _ = program.preprocess()
feeded_var_names, target_vars, fetches_var_name = program.build_export(
config, eval_program, startup_prog)
eval_program = eval_program.clone(for_test=True)
exe = fluid.Executor(place)
exe.run(startup_prog)
init_model(config, eval_program, exe)
save_inference_dir = config['Global']['save_inference_dir']
if not os.path.exists(save_inference_dir):
os.makedirs(save_inference_dir)
serving_client_dir = "{}/serving_client_dir".format(save_inference_dir)
serving_server_dir = "{}/serving_server_dir".format(save_inference_dir)
feed_dict = {
x: eval_program.global_block().var(x)
for x in feeded_var_names
}
fetch_dict = {x.name: x for x in target_vars}
save_model(serving_server_dir, serving_client_dir, feed_dict, fetch_dict,
eval_program)
print(
"paddle serving model saved in {}/serving_server_dir and {}/serving_client_dir".
format(save_inference_dir, save_inference_dir))
print("save success, output_name_list:", fetches_var_name)
if __name__ == '__main__':
main()

View File

@ -36,10 +36,10 @@ class TextClassifier(object):
if args.use_pdserving is False:
self.predictor, self.input_tensor, self.output_tensors = \
utility.create_predictor(args, mode="cls")
self.use_zero_copy_run = args.use_zero_copy_run
self.cls_image_shape = [int(v) for v in args.cls_image_shape.split(",")]
self.cls_batch_num = args.rec_batch_num
self.label_list = args.label_list
self.use_zero_copy_run = args.use_zero_copy_run
self.cls_thresh = args.cls_thresh
def resize_norm_img(self, img):

View File

@ -42,7 +42,6 @@ class TextDetector(object):
def __init__(self, args):
max_side_len = args.det_max_side_len
self.det_algorithm = args.det_algorithm
self.use_zero_copy_run = args.use_zero_copy_run
preprocess_params = {'max_side_len': max_side_len}
postprocess_params = {}
if self.det_algorithm == "DB":
@ -76,6 +75,7 @@ class TextDetector(object):
logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
sys.exit(0)
if args.use_pdserving is False:
self.use_zero_copy_run = args.use_zero_copy_run
self.predictor, self.input_tensor, self.output_tensors =\
utility.create_predictor(args, mode="det")

View File

@ -37,12 +37,12 @@ class TextRecognizer(object):
if args.use_pdserving is False:
self.predictor, self.input_tensor, self.output_tensors =\
utility.create_predictor(args, mode="rec")
self.use_zero_copy_run = args.use_zero_copy_run
self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
self.character_type = args.rec_char_type
self.rec_batch_num = args.rec_batch_num
self.rec_algorithm = args.rec_algorithm
self.text_len = args.max_text_length
self.use_zero_copy_run = args.use_zero_copy_run
char_ops_params = {
"character_type": args.rec_char_type,
"character_dict_path": args.rec_char_dict_path,

View File

@ -37,7 +37,6 @@ def parse_args():
parser.add_argument("--ir_optim", type=str2bool, default=True)
parser.add_argument("--use_tensorrt", type=str2bool, default=False)
parser.add_argument("--gpu_mem", type=int, default=8000)
parser.add_argument("--use_pdserving", type=str2bool, default=False)
# params for text detector
parser.add_argument("--image_dir", type=str)

View File

@ -0,0 +1,29 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from paddle_serving_client.io import inference_model_to_serving
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model_dir", type=str)
parser.add_argument("--server_dir", type=str, default="serving_server_dir")
parser.add_argument("--client_dir", type=str, default="serving_client_dir")
return parser.parse_args()
args = parse_args()
inference_model_dir = args.model_dir
serving_client_dir = args.server_dir
serving_server_dir = args.client_dir
feed_var_names, fetch_var_names = inference_model_to_serving(
inference_model_dir, serving_client_dir, serving_server_dir, model_filename="model", params_filename="params")