From 0742f5c5213e44a88c8286026586bb9475376542 Mon Sep 17 00:00:00 2001 From: LDOUBLEV Date: Wed, 7 Jul 2021 07:54:02 +0000 Subject: [PATCH] fix metric etc.al --- .../ch_det_lite_train_cml_v2.1.yml | 8 ++-- ppocr/losses/basic_loss.py | 37 ++++++++++++++++--- ppocr/losses/combined_loss.py | 2 - ppocr/losses/distillation_loss.py | 18 ++++----- ppocr/metrics/det_metric.py | 4 ++ ppocr/postprocess/db_postprocess.py | 9 ++--- ppocr/utils/save_load.py | 9 +++-- tools/eval.py | 6 ++- 8 files changed, 60 insertions(+), 33 deletions(-) diff --git a/configs/det/ch_ppocr_v2.1/ch_det_lite_train_cml_v2.1.yml b/configs/det/ch_ppocr_v2.1/ch_det_lite_train_cml_v2.1.yml index 5f0846fa..dcf0e1f2 100644 --- a/configs/det/ch_ppocr_v2.1/ch_det_lite_train_cml_v2.1.yml +++ b/configs/det/ch_ppocr_v2.1/ch_det_lite_train_cml_v2.1.yml @@ -90,14 +90,14 @@ Loss: - ["Student", "Student2"] maps_name: "thrink_maps" weight: 1.0 - act: "softmax" + # act: None model_name_pairs: ["Student", "Student2"] key: maps - DistillationDBLoss: weight: 1.0 model_name_list: ["Student", "Student2"] # key: maps - name: DBLoss + # name: DBLoss balance_loss: true main_loss_type: DiceLoss alpha: 5 @@ -119,8 +119,8 @@ Optimizer: PostProcess: name: DistillationDBPostProcess - model_name: ["Student", "Student2"] - key: head_out + model_name: ["Student", "Student2", "Teacher"] + # key: maps thresh: 0.3 box_thresh: 0.6 max_candidates: 1000 diff --git a/ppocr/losses/basic_loss.py b/ppocr/losses/basic_loss.py index fa3ceda1..8306523a 100644 --- a/ppocr/losses/basic_loss.py +++ b/ppocr/losses/basic_loss.py @@ -54,6 +54,27 @@ class CELoss(nn.Layer): return loss +class KLJSLoss(object): + def __init__(self, mode='kl'): + assert mode in ['kl', 'js', 'KL', 'JS'], "mode can only be one of ['kl', 'js', 'KL', 'JS']" + self.mode = mode + + def __call__(self, p1, p2, reduction="mean"): + + loss = paddle.multiply(p2, paddle.log( (p2+1e-5)/(p1+1e-5) + 1e-5)) + + if self.mode.lower() == "js": + loss += paddle.multiply(p1, paddle.log((p1+1e-5)/(p2+1e-5) + 1e-5)) + loss *= 0.5 + if reduction == "mean": + loss = paddle.mean(loss, axis=[1,2]) + elif reduction=="none" or reduction is None: + return loss + else: + loss = paddle.sum(loss, axis=[1,2]) + + return loss + class DMLLoss(nn.Layer): """ DMLLoss @@ -69,17 +90,21 @@ class DMLLoss(nn.Layer): self.act = nn.Sigmoid() else: self.act = None + + self.jskl_loss = KLJSLoss(mode="js") def forward(self, out1, out2): if self.act is not None: out1 = self.act(out1) out2 = self.act(out2) - - log_out1 = paddle.log(out1) - log_out2 = paddle.log(out2) - loss = (F.kl_div( - log_out1, out2, reduction='batchmean') + F.kl_div( - log_out2, out1, reduction='batchmean')) / 2.0 + if len(out1.shape) < 2: + log_out1 = paddle.log(out1) + log_out2 = paddle.log(out2) + loss = (F.kl_div( + log_out1, out2, reduction='batchmean') + F.kl_div( + log_out2, out1, reduction='batchmean')) / 2.0 + else: + loss = self.jskl_loss(out1, out2) return loss diff --git a/ppocr/losses/combined_loss.py b/ppocr/losses/combined_loss.py index f10efa31..0d6fe968 100644 --- a/ppocr/losses/combined_loss.py +++ b/ppocr/losses/combined_loss.py @@ -55,7 +55,5 @@ class CombinedLoss(nn.Layer): loss_all += loss[key] * weight else: loss_dict["{}_{}".format(key, idx)] = loss[key] - # loss[f"{key}_{idx}"] = loss[key] - loss_dict.update(loss) loss_dict["loss"] = loss_all return loss_dict diff --git a/ppocr/losses/distillation_loss.py b/ppocr/losses/distillation_loss.py index 43356c6f..75f0a773 100644 --- a/ppocr/losses/distillation_loss.py +++ b/ppocr/losses/distillation_loss.py @@ -46,13 +46,13 @@ class DistillationDMLLoss(DMLLoss): act=None, key=None, maps_name=None, - name="loss_dml"): + name="dml"): super().__init__(act=act) assert isinstance(model_name_pairs, list) self.key = key self.model_name_pairs = self._check_model_name_pairs(model_name_pairs) self.name = name - self.maps_name = maps_name + self.maps_name = self._check_maps_name(maps_name) def _check_model_name_pairs(self, model_name_pairs): if not isinstance(model_name_pairs, list): @@ -76,11 +76,11 @@ class DistillationDMLLoss(DMLLoss): new_outs = {} for k in self.maps_name: if k == "thrink_maps": - new_outs[k] = paddle.slice(outs, axes=[1], starts=[0], ends=[1]) + new_outs[k] = outs[:, 0, :, :] elif k == "threshold_maps": - new_outs[k] = paddle.slice(outs, axes=[1], starts=[1], ends=[2]) + new_outs[k] = outs[:, 1, :, :] elif k == "binary_maps": - new_outs[k] = paddle.slice(outs, axes=[1], starts=[2], ends=[3]) + new_outs[k] = outs[:, 2, :, :] else: continue return new_outs @@ -105,16 +105,16 @@ class DistillationDMLLoss(DMLLoss): else: outs1 = self._slice_out(out1) outs2 = self._slice_out(out2) - for k in outs1.keys(): + for _c, k in enumerate(outs1.keys()): loss = super().forward(outs1[k], outs2[k]) if isinstance(loss, dict): for key in loss: loss_dict["{}_{}_{}_{}_{}".format(key, pair[ 0], pair[1], map_name, idx)] = loss[key] else: - loss_dict["{}_{}_{}".format(self.name, self.maps_name, + loss_dict["{}_{}_{}".format(self.name, self.maps_name[_c], idx)] = loss - + loss_dict = _sum_loss(loss_dict) return loss_dict @@ -152,7 +152,7 @@ class DistillationDBLoss(DBLoss): beta=10, ohem_ratio=3, eps=1e-6, - name="db_loss", + name="db", **kwargs): super().__init__() self.model_name_list = model_name_list diff --git a/ppocr/metrics/det_metric.py b/ppocr/metrics/det_metric.py index 0f9e94df..811ee2fa 100644 --- a/ppocr/metrics/det_metric.py +++ b/ppocr/metrics/det_metric.py @@ -55,6 +55,10 @@ class DetMetric(object): result = self.evaluator.evaluate_image(gt_info_list, det_info_list) self.results.append(result) + metircs = self.evaluator.combine_results(self.results) + self.reset() + return metircs + def get_metric(self): """ return metrics { diff --git a/ppocr/postprocess/db_postprocess.py b/ppocr/postprocess/db_postprocess.py index f2b2fc69..e318c525 100755 --- a/ppocr/postprocess/db_postprocess.py +++ b/ppocr/postprocess/db_postprocess.py @@ -200,21 +200,18 @@ class DistillationDBPostProcess(DBPostProcess): use_dilation=False, score_mode="fast", **kwargs): - super(DistillationDBPostProcess, self).__init__( - thresh, box_thresh, max_candidates, unclip_ratio, use_dilation, - score_mode) + super().__init__() if not isinstance(model_name, list): model_name = [model_name] self.model_name = model_name - self.key = key - def forward(self, predicts, shape_list): + def __call__(self, predicts, shape_list): results = {} for name in self.model_name: pred = predicts[name] if self.key is not None: pred = pred[self.key] - results[name] = super().__call__(pred, shape_list=label) + results[name] = super().__call__(pred, shape_list=shape_list) return results diff --git a/ppocr/utils/save_load.py b/ppocr/utils/save_load.py index 732f9e20..4ee4b29f 100644 --- a/ppocr/utils/save_load.py +++ b/ppocr/utils/save_load.py @@ -130,11 +130,12 @@ def load_pretrained_params(model, path): for k1, k2 in zip(state_dict.keys(), params.keys()): if list(state_dict[k1].shape) == list(params[k2].shape): new_state_dict[k1] = params[k2] - else: - print( - f"The shape of model params {k1} {state_dict[k1].shape} not matched with loaded params {k2} {params[k2].shape} !" - ) + else: + print( + f"The shape of model params {k1} {state_dict[k1].shape} not matched with loaded params {k2} {params[k2].shape} !" + ) model.set_state_dict(new_state_dict) + print(f"load pretrain successful from {path}") return True def save_model(model, diff --git a/tools/eval.py b/tools/eval.py index c1315805..022498bb 100755 --- a/tools/eval.py +++ b/tools/eval.py @@ -55,8 +55,10 @@ def main(): model = build_model(config['Architecture']) use_srn = config['Architecture']['algorithm'] == "SRN" - model_type = config['Architecture']['model_type'] - + if "model_type" in config['Architecture'].keys(): + model_type = config['Architecture']['model_type'] + else: + model_type = None best_model_dict = init_model(config, model) if len(best_model_dict): logger.info('metric in ckpt ***************')