Merge commit '0150e56bddc2cf9c9fe803f3f8eca86a010a2869' of https://github.com/tink2123/PaddleOCR into serving
This commit is contained in:
commit
0b3aa57569
|
@ -0,0 +1,77 @@
|
|||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from paddle_serving_server.web_service import WebService, Op
|
||||
|
||||
import logging
|
||||
import numpy as np
|
||||
import cv2
|
||||
import base64
|
||||
# from paddle_serving_app.reader import OCRReader
|
||||
from ocr_reader import OCRReader, DetResizeForTest
|
||||
from paddle_serving_app.reader import Sequential, ResizeByFactor
|
||||
from paddle_serving_app.reader import Div, Normalize, Transpose
|
||||
from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes
|
||||
|
||||
_LOGGER = logging.getLogger()
|
||||
|
||||
|
||||
class DetOp(Op):
|
||||
def init_op(self):
|
||||
self.det_preprocess = Sequential([
|
||||
DetResizeForTest(), Div(255),
|
||||
Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
|
||||
(2, 0, 1))
|
||||
])
|
||||
self.filter_func = FilterBoxes(10, 10)
|
||||
self.post_func = DBPostProcess({
|
||||
"thresh": 0.3,
|
||||
"box_thresh": 0.5,
|
||||
"max_candidates": 1000,
|
||||
"unclip_ratio": 1.5,
|
||||
"min_size": 3
|
||||
})
|
||||
|
||||
def preprocess(self, input_dicts, data_id, log_id):
|
||||
(_, input_dict), = input_dicts.items()
|
||||
data = base64.b64decode(input_dict["image"].encode('utf8'))
|
||||
self.raw_im = data
|
||||
data = np.fromstring(data, np.uint8)
|
||||
# Note: class variables(self.var) can only be used in process op mode
|
||||
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
|
||||
self.ori_h, self.ori_w, _ = im.shape
|
||||
det_img = self.det_preprocess(im)
|
||||
_, self.new_h, self.new_w = det_img.shape
|
||||
return {"x": det_img[np.newaxis, :].copy()}, False, None, ""
|
||||
|
||||
def postprocess(self, input_dicts, fetch_dict, log_id):
|
||||
det_out = fetch_dict["save_infer_model/scale_0.tmp_1"]
|
||||
ratio_list = [
|
||||
float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w
|
||||
]
|
||||
dt_boxes_list = self.post_func(det_out, [ratio_list])
|
||||
dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w])
|
||||
out_dict = {"dt_boxes": str(dt_boxes)}
|
||||
|
||||
return out_dict, None, ""
|
||||
|
||||
|
||||
class OcrService(WebService):
|
||||
def get_pipeline_response(self, read_op):
|
||||
det_op = DetOp(name="det", input_ops=[read_op])
|
||||
return det_op
|
||||
|
||||
|
||||
uci_service = OcrService(name="ocr")
|
||||
uci_service.prepare_pipeline_config("config.yml")
|
||||
uci_service.run_service()
|
|
@ -0,0 +1,86 @@
|
|||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from paddle_serving_server.web_service import WebService, Op
|
||||
|
||||
import logging
|
||||
import numpy as np
|
||||
import cv2
|
||||
import base64
|
||||
# from paddle_serving_app.reader import OCRReader
|
||||
from ocr_reader import OCRReader, DetResizeForTest
|
||||
from paddle_serving_app.reader import Sequential, ResizeByFactor
|
||||
from paddle_serving_app.reader import Div, Normalize, Transpose
|
||||
|
||||
_LOGGER = logging.getLogger()
|
||||
|
||||
|
||||
class RecOp(Op):
|
||||
def init_op(self):
|
||||
self.ocr_reader = OCRReader(
|
||||
char_dict_path="../../ppocr/utils/ppocr_keys_v1.txt")
|
||||
|
||||
def preprocess(self, input_dicts, data_id, log_id):
|
||||
(_, input_dict), = input_dicts.items()
|
||||
raw_im = base64.b64decode(input_dict["image"].encode('utf8'))
|
||||
data = np.fromstring(raw_im, np.uint8)
|
||||
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
|
||||
feed_list = []
|
||||
max_wh_ratio = 0
|
||||
## Many mini-batchs, the type of feed_data is list.
|
||||
max_batch_size = 6 # len(dt_boxes)
|
||||
|
||||
# If max_batch_size is 0, skipping predict stage
|
||||
if max_batch_size == 0:
|
||||
return {}, True, None, ""
|
||||
boxes_size = max_batch_size
|
||||
rem = boxes_size % max_batch_size
|
||||
|
||||
h, w = im.shape[0:2]
|
||||
wh_ratio = w * 1.0 / h
|
||||
max_wh_ratio = max(max_wh_ratio, wh_ratio)
|
||||
_, w, h = self.ocr_reader.resize_norm_img(im, max_wh_ratio).shape
|
||||
norm_img = self.ocr_reader.resize_norm_img(im, max_batch_size)
|
||||
norm_img = norm_img[np.newaxis, :]
|
||||
feed = {"x": norm_img.copy()}
|
||||
feed_list.append(feed)
|
||||
return feed_list, False, None, ""
|
||||
|
||||
def postprocess(self, input_dicts, fetch_data, log_id):
|
||||
res_list = []
|
||||
if isinstance(fetch_data, dict):
|
||||
if len(fetch_data) > 0:
|
||||
rec_batch_res = self.ocr_reader.postprocess(
|
||||
fetch_data, with_score=True)
|
||||
for res in rec_batch_res:
|
||||
res_list.append(res[0])
|
||||
elif isinstance(fetch_data, list):
|
||||
for one_batch in fetch_data:
|
||||
one_batch_res = self.ocr_reader.postprocess(
|
||||
one_batch, with_score=True)
|
||||
for res in one_batch_res:
|
||||
res_list.append(res[0])
|
||||
|
||||
res = {"res": str(res_list)}
|
||||
return res, None, ""
|
||||
|
||||
|
||||
class OcrService(WebService):
|
||||
def get_pipeline_response(self, read_op):
|
||||
rec_op = RecOp(name="rec", input_ops=[read_op])
|
||||
return rec_op
|
||||
|
||||
|
||||
uci_service = OcrService(name="ocr")
|
||||
uci_service.prepare_pipeline_config("config.yml")
|
||||
uci_service.run_service()
|
Loading…
Reference in New Issue