This commit is contained in:
littletomatodonkey 2021-02-01 14:03:32 +00:00
parent 36dae990b8
commit 0c75cbc55b
3 changed files with 5 additions and 5 deletions

View File

@ -133,7 +133,7 @@ word_dict.txt 每行有一个单字,将字符与数字索引映射在一起,
您可以按需使用。 您可以按需使用。
目前的多语言模型仍处在demo阶段会持续优化模型并补充语种**非常欢迎您为我们提供其他语言的字典和字体** 目前的多语言模型仍处在demo阶段会持续优化模型并补充语种**非常欢迎您为我们提供其他语言的字典和字体**
如您愿意可将字典文件提交至 [dict](../../ppocr/utils/dict) 将语料文件提交至[corpus](../../ppocr/utils/corpus)我们会在Repo中感谢您。 如您愿意可将字典文件提交至 [dict](../../ppocr/utils/dict)我们会在Repo中感谢您。
- 自定义字典 - 自定义字典

View File

@ -126,7 +126,7 @@ In `word_dict.txt`, there is a single word in each line, which maps characters a
You can use it on demand. You can use it on demand.
The current multi-language model is still in the demo stage and will continue to optimize the model and add languages. **You are very welcome to provide us with dictionaries and fonts in other languages**, The current multi-language model is still in the demo stage and will continue to optimize the model and add languages. **You are very welcome to provide us with dictionaries and fonts in other languages**,
If you like, you can submit the dictionary file to [dict](../../ppocr/utils/dict) or corpus file to [corpus](../../ppocr/utils/corpus) and we will thank you in the Repo. If you like, you can submit the dictionary file to [dict](../../ppocr/utils/dict) and we will thank you in the Repo.
To customize the dict file, please modify the `character_dict_path` field in `configs/rec/rec_icdar15_train.yml` and set `character_type` to `ch`. To customize the dict file, please modify the `character_dict_path` field in `configs/rec/rec_icdar15_train.yml` and set `character_type` to `ch`.

View File

@ -222,8 +222,8 @@ def train(config,
batch = [item.numpy() for item in batch] batch = [item.numpy() for item in batch]
post_result = post_process_class(preds, batch[1]) post_result = post_process_class(preds, batch[1])
eval_class(post_result, batch) eval_class(post_result, batch)
metirc = eval_class.get_metric() metric = eval_class.get_metric()
train_stats.update(metirc) train_stats.update(metric)
if vdl_writer is not None and dist.get_rank() == 0: if vdl_writer is not None and dist.get_rank() == 0:
for k, v in train_stats.get().items(): for k, v in train_stats.get().items():
@ -251,7 +251,7 @@ def train(config,
min_average_window=10000, min_average_window=10000,
max_average_window=15625) max_average_window=15625)
Model_Average.apply() Model_Average.apply()
cur_metric = eval(model, valid_dataloader, post_process_class, cur_metric = eval(model, valid_dataloader, post_process_class,
eval_class) eval_class)
cur_metric_str = 'cur metric, {}'.format(', '.join( cur_metric_str = 'cur metric, {}'.format(', '.join(
['{}: {}'.format(k, v) for k, v in cur_metric.items()])) ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))