mv drop last in det model
This commit is contained in:
parent
b55b8eda22
commit
0cc083f6a4
|
@ -9,7 +9,6 @@ Global:
|
|||
eval_batch_step: 5000
|
||||
train_batch_size_per_card: 16
|
||||
test_batch_size_per_card: 16
|
||||
drop_last: false
|
||||
image_shape: [3, 640, 640]
|
||||
reader_yml: ./configs/det/det_db_icdar15_reader.yml
|
||||
pretrain_weights: ./pretrain_models/MobileNetV3_large_x0_5_pretrained/
|
||||
|
|
|
@ -9,7 +9,6 @@ Global:
|
|||
eval_batch_step: 5000
|
||||
train_batch_size_per_card: 16
|
||||
test_batch_size_per_card: 16
|
||||
drop_last: false
|
||||
image_shape: [3, 512, 512]
|
||||
reader_yml: ./configs/det/det_east_icdar15_reader.yml
|
||||
pretrain_weights: ./pretrain_models/MobileNetV3_large_x0_5_pretrained/
|
||||
|
|
|
@ -10,7 +10,6 @@ Global:
|
|||
train_batch_size_per_card: 8
|
||||
test_batch_size_per_card: 16
|
||||
image_shape: [3, 640, 640]
|
||||
drop_last: false
|
||||
reader_yml: ./configs/det/det_db_icdar15_reader.yml
|
||||
pretrain_weights: ./pretrain_models/ResNet50_vd_ssld_pretrained/
|
||||
save_res_path: ./output/det_db/predicts_db.txt
|
||||
|
|
|
@ -10,7 +10,6 @@ Global:
|
|||
train_batch_size_per_card: 8
|
||||
test_batch_size_per_card: 16
|
||||
image_shape: [3, 512, 512]
|
||||
drop_last: false
|
||||
reader_yml: ./configs/det/det_east_icdar15_reader.yml
|
||||
pretrain_weights: ./pretrain_models/ResNet50_vd_ssld_pretrained/
|
||||
save_res_path: ./output/det_east/predicts_east.txt
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
TrainReader:
|
||||
reader_function: ppocr.data.rec.dataset_traversal,LMDBReader
|
||||
num_workers: 8
|
||||
lmdb_sets_dir: ./train_data/data_lmdb_release/training/
|
||||
lmdb_sets_dir: ./train_data/data_lmdb_release/evaluation/
|
||||
|
||||
EvalReader:
|
||||
reader_function: ppocr.data.rec.dataset_traversal,LMDBReader
|
||||
|
|
|
@ -1,20 +1,20 @@
|
|||
Global:
|
||||
algorithm: CRNN
|
||||
use_gpu: true
|
||||
use_gpu: false
|
||||
epoch_num: 1000
|
||||
log_smooth_window: 20
|
||||
print_batch_step: 10
|
||||
save_model_dir: ./output/rec_CRNN
|
||||
save_epoch_step: 300
|
||||
eval_batch_step: 500
|
||||
train_batch_size_per_card: 256
|
||||
test_batch_size_per_card: 256
|
||||
train_batch_size_per_card: 2
|
||||
test_batch_size_per_card: 2
|
||||
image_shape: [3, 32, 100]
|
||||
max_text_length: 25
|
||||
character_type: en
|
||||
loss_type: ctc
|
||||
reader_yml: ./configs/rec/rec_icdar15_reader.yml
|
||||
pretrain_weights: ./pretrain_models/rec_mv3_none_bilstm_ctc/best_accuracy
|
||||
pretrain_weights:
|
||||
checkpoints:
|
||||
save_inference_dir:
|
||||
infer_img:
|
||||
|
|
|
@ -1,14 +1,14 @@
|
|||
Global:
|
||||
algorithm: RARE
|
||||
use_gpu: true
|
||||
use_gpu: false
|
||||
epoch_num: 72
|
||||
log_smooth_window: 20
|
||||
print_batch_step: 10
|
||||
save_model_dir: output/rec_RARE
|
||||
save_epoch_step: 3
|
||||
eval_batch_step: 2000
|
||||
train_batch_size_per_card: 256
|
||||
test_batch_size_per_card: 256
|
||||
train_batch_size_per_card: 2
|
||||
test_batch_size_per_card: 2
|
||||
image_shape: [3, 32, 100]
|
||||
max_text_length: 25
|
||||
character_type: en
|
||||
|
|
|
@ -32,7 +32,6 @@ class TrainReader(object):
|
|||
self.num_workers = params['num_workers']
|
||||
self.label_file_path = params['label_file_path']
|
||||
self.batch_size = params['train_batch_size_per_card']
|
||||
self.drop_last = params['drop_last']
|
||||
assert 'process_function' in params,\
|
||||
"absence process_function in Reader"
|
||||
self.process = create_module(params['process_function'])(params)
|
||||
|
@ -62,9 +61,6 @@ class TrainReader(object):
|
|||
if len(batch_outs) == self.batch_size:
|
||||
yield batch_outs
|
||||
batch_outs = []
|
||||
if not self.drop_last:
|
||||
if len(batch_outs) != 0:
|
||||
yield batch_outs
|
||||
|
||||
return batch_iter_reader
|
||||
|
||||
|
|
|
@ -94,9 +94,9 @@ class RecModel(object):
|
|||
logger.info(
|
||||
"WARNRNG!!!\n"
|
||||
"TPS does not support variable shape in chinese!"
|
||||
"We set default shape=[3,32,320], it may affect the inference effect"
|
||||
"We set img_shape to be the same , it may affect the inference effect"
|
||||
)
|
||||
image_shape[-1] = 320
|
||||
image_shape = deepcopy(self.image_shape)
|
||||
image = fluid.data(name='image', shape=image_shape, dtype='float32')
|
||||
labels = None
|
||||
loader = None
|
||||
|
|
Loading…
Reference in New Issue