Merge pull request #4000 from LDOUBLEV/fix_nonfinite

fix nonfinite and add quant kl
This commit is contained in:
Double_V 2021-09-23 10:49:30 +08:00 committed by GitHub
commit 0da240d0e8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 206 additions and 7 deletions

View File

@ -0,0 +1,146 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..', '..', '..')))
sys.path.append(
os.path.abspath(os.path.join(__dir__, '..', '..', '..', 'tools')))
import yaml
import paddle
import paddle.distributed as dist
paddle.seed(2)
from ppocr.data import build_dataloader
from ppocr.modeling.architectures import build_model
from ppocr.losses import build_loss
from ppocr.optimizer import build_optimizer
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
from ppocr.utils.save_load import init_model
import tools.program as program
import paddleslim
from paddleslim.dygraph.quant import QAT
import numpy as np
dist.get_world_size()
class PACT(paddle.nn.Layer):
def __init__(self):
super(PACT, self).__init__()
alpha_attr = paddle.ParamAttr(
name=self.full_name() + ".pact",
initializer=paddle.nn.initializer.Constant(value=20),
learning_rate=1.0,
regularizer=paddle.regularizer.L2Decay(2e-5))
self.alpha = self.create_parameter(
shape=[1], attr=alpha_attr, dtype='float32')
def forward(self, x):
out_left = paddle.nn.functional.relu(x - self.alpha)
out_right = paddle.nn.functional.relu(-self.alpha - x)
x = x - out_left + out_right
return x
quant_config = {
# weight preprocess type, default is None and no preprocessing is performed.
'weight_preprocess_type': None,
# activation preprocess type, default is None and no preprocessing is performed.
'activation_preprocess_type': None,
# weight quantize type, default is 'channel_wise_abs_max'
'weight_quantize_type': 'channel_wise_abs_max',
# activation quantize type, default is 'moving_average_abs_max'
'activation_quantize_type': 'moving_average_abs_max',
# weight quantize bit num, default is 8
'weight_bits': 8,
# activation quantize bit num, default is 8
'activation_bits': 8,
# data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
'dtype': 'int8',
# window size for 'range_abs_max' quantization. default is 10000
'window_size': 10000,
# The decay coefficient of moving average, default is 0.9
'moving_rate': 0.9,
# for dygraph quantization, layers of type in quantizable_layer_type will be quantized
'quantizable_layer_type': ['Conv2D', 'Linear'],
}
def sample_generator(loader):
def __reader__():
for indx, data in enumerate(loader):
images = np.array(data[0])
yield images
return __reader__
def main(config, device, logger, vdl_writer):
# init dist environment
if config['Global']['distributed']:
dist.init_parallel_env()
global_config = config['Global']
# build dataloader
config['Train']['loader']['num_workers'] = 0
train_dataloader = build_dataloader(config, 'Train', device, logger)
if config['Eval']:
config['Eval']['loader']['num_workers'] = 0
valid_dataloader = build_dataloader(config, 'Eval', device, logger)
else:
valid_dataloader = None
paddle.enable_static()
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
if 'inference_model' in global_config.keys(): # , 'inference_model'):
inference_model_dir = global_config['inference_model']
else:
inference_model_dir = os.path.dirname(global_config['pretrained_model'])
if not (os.path.exists(os.path.join(inference_model_dir, "inference.pdmodel")) and \
os.path.exists(os.path.join(inference_model_dir, "inference.pdiparams")) ):
raise ValueError(
"Please set inference model dir in Global.inference_model or Global.pretrained_model for post-quantazition"
)
paddleslim.quant.quant_post_static(
executor=exe,
model_dir=inference_model_dir,
model_filename='inference.pdmodel',
params_filename='inference.pdiparams',
quantize_model_path=global_config['save_inference_dir'],
sample_generator=sample_generator(train_dataloader),
save_model_filename='inference.pdmodel',
save_params_filename='inference.pdiparams',
batch_size=1,
batch_nums=None)
if __name__ == '__main__':
config, device, logger, vdl_writer = program.preprocess(is_train=True)
main(config, device, logger, vdl_writer)

View File

@ -23,10 +23,10 @@ Architecture:
name: MobileNetV3
scale: 0.5
model_name: large
disable_se: True
disable_se: False
Neck:
name: DBFPN
out_channels: 96
out_channels: 256
Head:
name: DBHead
k: 50
@ -74,7 +74,7 @@ Train:
channel_first: False
- DetLabelEncode: # Class handling label
- Resize:
# size: [640, 640]
size: [640, 640]
- MakeBorderMap:
shrink_ratio: 0.4
thresh_min: 0.3

View File

@ -12,7 +12,7 @@ train_model_name:latest
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
null:null
##
trainer:norm_train|pact_train
trainer:norm_train|pact_train|fpgm_train
norm_train:tools/train.py -c tests/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
pact_train:deploy/slim/quantization/quant.py -c tests/configs/det_mv3_db.yml -o
fpgm_train:deploy/slim/prune/sensitivity_anal.py -c tests/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/det_mv3_db_v2.0_train/best_accuracy
@ -21,7 +21,7 @@ null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c tests/configs/det_mv3_db.yml -o
eval:null
null:null
##
===========================infer_params===========================
@ -35,7 +35,7 @@ export1:null
export2:null
##
train_model:./inference/ch_ppocr_mobile_v2.0_det_train/best_accuracy
infer_export:tools/export_model.py -c configs/det/det_mv3_db.yml -o
infer_export:tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
infer_quant:False
inference:tools/infer/predict_det.py
--use_gpu:True|False

View File

@ -0,0 +1,51 @@
===========================train_params===========================
model_name:ocr_system
python:python3.7
gpu_list:null
Global.use_gpu:null
Global.auto_cast:null
Global.epoch_num:null
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:null
Global.pretrained_model:null
train_model_name:null
train_infer_img_dir:null
null:null
##
trainer:
norm_train:null
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:null
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:null
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
kl_quant:deploy/slim/quantization/quant_kl.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
infer_quant:True
inference:tools/infer/predict_det.py
--use_gpu:TrueFalse
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16|int8
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
--save_log_path:null
--benchmark:True
null:null

View File

@ -433,7 +433,9 @@ if [ ${MODE} = "infer" ]; then
save_infer_dir=$(dirname $infer_model)
set_export_weight=$(func_set_params "${export_weight}" "${infer_model}")
set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}")
export_cmd="${python} ${norm_export} ${set_export_weight} ${set_save_infer_key}"
export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key}"
echo ${infer_run_exports[Count]}
echo $export_cmd
eval $export_cmd
status_export=$?
status_check $status_export "${export_cmd}" "${status_log}"