Merge pull request #4000 from LDOUBLEV/fix_nonfinite
fix nonfinite and add quant kl
This commit is contained in:
commit
0da240d0e8
|
@ -0,0 +1,146 @@
|
||||||
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from __future__ import division
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
|
||||||
|
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
||||||
|
sys.path.append(__dir__)
|
||||||
|
sys.path.append(os.path.abspath(os.path.join(__dir__, '..', '..', '..')))
|
||||||
|
sys.path.append(
|
||||||
|
os.path.abspath(os.path.join(__dir__, '..', '..', '..', 'tools')))
|
||||||
|
|
||||||
|
import yaml
|
||||||
|
import paddle
|
||||||
|
import paddle.distributed as dist
|
||||||
|
|
||||||
|
paddle.seed(2)
|
||||||
|
|
||||||
|
from ppocr.data import build_dataloader
|
||||||
|
from ppocr.modeling.architectures import build_model
|
||||||
|
from ppocr.losses import build_loss
|
||||||
|
from ppocr.optimizer import build_optimizer
|
||||||
|
from ppocr.postprocess import build_post_process
|
||||||
|
from ppocr.metrics import build_metric
|
||||||
|
from ppocr.utils.save_load import init_model
|
||||||
|
import tools.program as program
|
||||||
|
import paddleslim
|
||||||
|
from paddleslim.dygraph.quant import QAT
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
dist.get_world_size()
|
||||||
|
|
||||||
|
|
||||||
|
class PACT(paddle.nn.Layer):
|
||||||
|
def __init__(self):
|
||||||
|
super(PACT, self).__init__()
|
||||||
|
alpha_attr = paddle.ParamAttr(
|
||||||
|
name=self.full_name() + ".pact",
|
||||||
|
initializer=paddle.nn.initializer.Constant(value=20),
|
||||||
|
learning_rate=1.0,
|
||||||
|
regularizer=paddle.regularizer.L2Decay(2e-5))
|
||||||
|
|
||||||
|
self.alpha = self.create_parameter(
|
||||||
|
shape=[1], attr=alpha_attr, dtype='float32')
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
out_left = paddle.nn.functional.relu(x - self.alpha)
|
||||||
|
out_right = paddle.nn.functional.relu(-self.alpha - x)
|
||||||
|
x = x - out_left + out_right
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
quant_config = {
|
||||||
|
# weight preprocess type, default is None and no preprocessing is performed.
|
||||||
|
'weight_preprocess_type': None,
|
||||||
|
# activation preprocess type, default is None and no preprocessing is performed.
|
||||||
|
'activation_preprocess_type': None,
|
||||||
|
# weight quantize type, default is 'channel_wise_abs_max'
|
||||||
|
'weight_quantize_type': 'channel_wise_abs_max',
|
||||||
|
# activation quantize type, default is 'moving_average_abs_max'
|
||||||
|
'activation_quantize_type': 'moving_average_abs_max',
|
||||||
|
# weight quantize bit num, default is 8
|
||||||
|
'weight_bits': 8,
|
||||||
|
# activation quantize bit num, default is 8
|
||||||
|
'activation_bits': 8,
|
||||||
|
# data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
|
||||||
|
'dtype': 'int8',
|
||||||
|
# window size for 'range_abs_max' quantization. default is 10000
|
||||||
|
'window_size': 10000,
|
||||||
|
# The decay coefficient of moving average, default is 0.9
|
||||||
|
'moving_rate': 0.9,
|
||||||
|
# for dygraph quantization, layers of type in quantizable_layer_type will be quantized
|
||||||
|
'quantizable_layer_type': ['Conv2D', 'Linear'],
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def sample_generator(loader):
|
||||||
|
def __reader__():
|
||||||
|
for indx, data in enumerate(loader):
|
||||||
|
images = np.array(data[0])
|
||||||
|
yield images
|
||||||
|
|
||||||
|
return __reader__
|
||||||
|
|
||||||
|
|
||||||
|
def main(config, device, logger, vdl_writer):
|
||||||
|
# init dist environment
|
||||||
|
if config['Global']['distributed']:
|
||||||
|
dist.init_parallel_env()
|
||||||
|
|
||||||
|
global_config = config['Global']
|
||||||
|
|
||||||
|
# build dataloader
|
||||||
|
config['Train']['loader']['num_workers'] = 0
|
||||||
|
train_dataloader = build_dataloader(config, 'Train', device, logger)
|
||||||
|
if config['Eval']:
|
||||||
|
config['Eval']['loader']['num_workers'] = 0
|
||||||
|
valid_dataloader = build_dataloader(config, 'Eval', device, logger)
|
||||||
|
else:
|
||||||
|
valid_dataloader = None
|
||||||
|
|
||||||
|
paddle.enable_static()
|
||||||
|
place = paddle.CPUPlace()
|
||||||
|
exe = paddle.static.Executor(place)
|
||||||
|
|
||||||
|
if 'inference_model' in global_config.keys(): # , 'inference_model'):
|
||||||
|
inference_model_dir = global_config['inference_model']
|
||||||
|
else:
|
||||||
|
inference_model_dir = os.path.dirname(global_config['pretrained_model'])
|
||||||
|
if not (os.path.exists(os.path.join(inference_model_dir, "inference.pdmodel")) and \
|
||||||
|
os.path.exists(os.path.join(inference_model_dir, "inference.pdiparams")) ):
|
||||||
|
raise ValueError(
|
||||||
|
"Please set inference model dir in Global.inference_model or Global.pretrained_model for post-quantazition"
|
||||||
|
)
|
||||||
|
|
||||||
|
paddleslim.quant.quant_post_static(
|
||||||
|
executor=exe,
|
||||||
|
model_dir=inference_model_dir,
|
||||||
|
model_filename='inference.pdmodel',
|
||||||
|
params_filename='inference.pdiparams',
|
||||||
|
quantize_model_path=global_config['save_inference_dir'],
|
||||||
|
sample_generator=sample_generator(train_dataloader),
|
||||||
|
save_model_filename='inference.pdmodel',
|
||||||
|
save_params_filename='inference.pdiparams',
|
||||||
|
batch_size=1,
|
||||||
|
batch_nums=None)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
config, device, logger, vdl_writer = program.preprocess(is_train=True)
|
||||||
|
main(config, device, logger, vdl_writer)
|
|
@ -23,10 +23,10 @@ Architecture:
|
||||||
name: MobileNetV3
|
name: MobileNetV3
|
||||||
scale: 0.5
|
scale: 0.5
|
||||||
model_name: large
|
model_name: large
|
||||||
disable_se: True
|
disable_se: False
|
||||||
Neck:
|
Neck:
|
||||||
name: DBFPN
|
name: DBFPN
|
||||||
out_channels: 96
|
out_channels: 256
|
||||||
Head:
|
Head:
|
||||||
name: DBHead
|
name: DBHead
|
||||||
k: 50
|
k: 50
|
||||||
|
@ -74,7 +74,7 @@ Train:
|
||||||
channel_first: False
|
channel_first: False
|
||||||
- DetLabelEncode: # Class handling label
|
- DetLabelEncode: # Class handling label
|
||||||
- Resize:
|
- Resize:
|
||||||
# size: [640, 640]
|
size: [640, 640]
|
||||||
- MakeBorderMap:
|
- MakeBorderMap:
|
||||||
shrink_ratio: 0.4
|
shrink_ratio: 0.4
|
||||||
thresh_min: 0.3
|
thresh_min: 0.3
|
||||||
|
|
|
@ -12,7 +12,7 @@ train_model_name:latest
|
||||||
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
|
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
|
||||||
null:null
|
null:null
|
||||||
##
|
##
|
||||||
trainer:norm_train|pact_train
|
trainer:norm_train|pact_train|fpgm_train
|
||||||
norm_train:tools/train.py -c tests/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
|
norm_train:tools/train.py -c tests/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
|
||||||
pact_train:deploy/slim/quantization/quant.py -c tests/configs/det_mv3_db.yml -o
|
pact_train:deploy/slim/quantization/quant.py -c tests/configs/det_mv3_db.yml -o
|
||||||
fpgm_train:deploy/slim/prune/sensitivity_anal.py -c tests/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/det_mv3_db_v2.0_train/best_accuracy
|
fpgm_train:deploy/slim/prune/sensitivity_anal.py -c tests/configs/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/det_mv3_db_v2.0_train/best_accuracy
|
||||||
|
@ -21,7 +21,7 @@ null:null
|
||||||
null:null
|
null:null
|
||||||
##
|
##
|
||||||
===========================eval_params===========================
|
===========================eval_params===========================
|
||||||
eval:tools/eval.py -c tests/configs/det_mv3_db.yml -o
|
eval:null
|
||||||
null:null
|
null:null
|
||||||
##
|
##
|
||||||
===========================infer_params===========================
|
===========================infer_params===========================
|
||||||
|
@ -35,7 +35,7 @@ export1:null
|
||||||
export2:null
|
export2:null
|
||||||
##
|
##
|
||||||
train_model:./inference/ch_ppocr_mobile_v2.0_det_train/best_accuracy
|
train_model:./inference/ch_ppocr_mobile_v2.0_det_train/best_accuracy
|
||||||
infer_export:tools/export_model.py -c configs/det/det_mv3_db.yml -o
|
infer_export:tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
|
||||||
infer_quant:False
|
infer_quant:False
|
||||||
inference:tools/infer/predict_det.py
|
inference:tools/infer/predict_det.py
|
||||||
--use_gpu:True|False
|
--use_gpu:True|False
|
||||||
|
|
|
@ -0,0 +1,51 @@
|
||||||
|
===========================train_params===========================
|
||||||
|
model_name:ocr_system
|
||||||
|
python:python3.7
|
||||||
|
gpu_list:null
|
||||||
|
Global.use_gpu:null
|
||||||
|
Global.auto_cast:null
|
||||||
|
Global.epoch_num:null
|
||||||
|
Global.save_model_dir:./output/
|
||||||
|
Train.loader.batch_size_per_card:null
|
||||||
|
Global.pretrained_model:null
|
||||||
|
train_model_name:null
|
||||||
|
train_infer_img_dir:null
|
||||||
|
null:null
|
||||||
|
##
|
||||||
|
trainer:
|
||||||
|
norm_train:null
|
||||||
|
pact_train:null
|
||||||
|
fpgm_train:null
|
||||||
|
distill_train:null
|
||||||
|
null:null
|
||||||
|
null:null
|
||||||
|
##
|
||||||
|
===========================eval_params===========================
|
||||||
|
eval:null
|
||||||
|
null:null
|
||||||
|
##
|
||||||
|
===========================infer_params===========================
|
||||||
|
Global.save_inference_dir:./output/
|
||||||
|
Global.pretrained_model:
|
||||||
|
norm_export:null
|
||||||
|
quant_export:null
|
||||||
|
fpgm_export:null
|
||||||
|
distill_export:null
|
||||||
|
export1:null
|
||||||
|
export2:null
|
||||||
|
##
|
||||||
|
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
|
||||||
|
kl_quant:deploy/slim/quantization/quant_kl.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o
|
||||||
|
infer_quant:True
|
||||||
|
inference:tools/infer/predict_det.py
|
||||||
|
--use_gpu:TrueFalse
|
||||||
|
--enable_mkldnn:True|False
|
||||||
|
--cpu_threads:1|6
|
||||||
|
--rec_batch_num:1
|
||||||
|
--use_tensorrt:False|True
|
||||||
|
--precision:fp32|fp16|int8
|
||||||
|
--det_model_dir:
|
||||||
|
--image_dir:./inference/ch_det_data_50/all-sum-510/
|
||||||
|
--save_log_path:null
|
||||||
|
--benchmark:True
|
||||||
|
null:null
|
|
@ -433,7 +433,9 @@ if [ ${MODE} = "infer" ]; then
|
||||||
save_infer_dir=$(dirname $infer_model)
|
save_infer_dir=$(dirname $infer_model)
|
||||||
set_export_weight=$(func_set_params "${export_weight}" "${infer_model}")
|
set_export_weight=$(func_set_params "${export_weight}" "${infer_model}")
|
||||||
set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}")
|
set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}")
|
||||||
export_cmd="${python} ${norm_export} ${set_export_weight} ${set_save_infer_key}"
|
export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key}"
|
||||||
|
echo ${infer_run_exports[Count]}
|
||||||
|
echo $export_cmd
|
||||||
eval $export_cmd
|
eval $export_cmd
|
||||||
status_export=$?
|
status_export=$?
|
||||||
status_check $status_export "${export_cmd}" "${status_log}"
|
status_check $status_export "${export_cmd}" "${status_log}"
|
||||||
|
|
Loading…
Reference in New Issue