add grad clip (#1411)

This commit is contained in:
zhoujun 2020-12-14 12:19:33 +08:00 committed by GitHub
parent 53b514e39d
commit 0e32093fdc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 23 additions and 5 deletions

View File

@ -42,6 +42,7 @@
| name | 优化器类名 | Adam | 目前支持`Momentum`,`Adam`,`RMSProp`, 见[ppocr/optimizer/optimizer.py](../../ppocr/optimizer/optimizer.py) | | name | 优化器类名 | Adam | 目前支持`Momentum`,`Adam`,`RMSProp`, 见[ppocr/optimizer/optimizer.py](../../ppocr/optimizer/optimizer.py) |
| beta1 | 设置一阶矩估计的指数衰减率 | 0.9 | \ | | beta1 | 设置一阶矩估计的指数衰减率 | 0.9 | \ |
| beta2 | 设置二阶矩估计的指数衰减率 | 0.999 | \ | | beta2 | 设置二阶矩估计的指数衰减率 | 0.999 | \ |
| clip_norm | 所允许的二范数最大值 | | \ |
| **lr** | 设置学习率decay方式 | - | \ | | **lr** | 设置学习率decay方式 | - | \ |
| name | 学习率decay类名 | Cosine | 目前支持`Linear`,`Cosine`,`Step`,`Piecewise`, 见[ppocr/optimizer/learning_rate.py](../../ppocr/optimizer/learning_rate.py) | | name | 学习率decay类名 | Cosine | 目前支持`Linear`,`Cosine`,`Step`,`Piecewise`, 见[ppocr/optimizer/learning_rate.py](../../ppocr/optimizer/learning_rate.py) |
| learning_rate | 基础学习率 | 0.001 | \ | | learning_rate | 基础学习率 | 0.001 | \ |

View File

@ -41,6 +41,7 @@ Take rec_chinese_lite_train_v2.0.yml as an example
| name | Optimizer class name | Adam | Currently supports`Momentum`,`Adam`,`RMSProp`, see [ppocr/optimizer/optimizer.py](../../ppocr/optimizer/optimizer.py) | | name | Optimizer class name | Adam | Currently supports`Momentum`,`Adam`,`RMSProp`, see [ppocr/optimizer/optimizer.py](../../ppocr/optimizer/optimizer.py) |
| beta1 | Set the exponential decay rate for the 1st moment estimates | 0.9 | \ | | beta1 | Set the exponential decay rate for the 1st moment estimates | 0.9 | \ |
| beta2 | Set the exponential decay rate for the 2nd moment estimates | 0.999 | \ | | beta2 | Set the exponential decay rate for the 2nd moment estimates | 0.999 | \ |
| clip_norm | The maximum norm value | - | \ |
| **lr** | Set the learning rate decay method | - | \ | | **lr** | Set the learning rate decay method | - | \ |
| name | Learning rate decay class name | Cosine | Currently supports`Linear`,`Cosine`,`Step`,`Piecewise`, see[ppocr/optimizer/learning_rate.py](../../ppocr/optimizer/learning_rate.py) | | name | Learning rate decay class name | Cosine | Currently supports`Linear`,`Cosine`,`Step`,`Piecewise`, see[ppocr/optimizer/learning_rate.py](../../ppocr/optimizer/learning_rate.py) |
| learning_rate | Set the base learning rate | 0.001 | \ | | learning_rate | Set the base learning rate | 0.001 | \ |

View File

@ -16,8 +16,8 @@ from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
from __future__ import unicode_literals from __future__ import unicode_literals
import copy import copy
import paddle
__all__ = ['build_optimizer'] __all__ = ['build_optimizer']
@ -49,7 +49,13 @@ def build_optimizer(config, epochs, step_each_epoch, parameters):
# step3 build optimizer # step3 build optimizer
optim_name = config.pop('name') optim_name = config.pop('name')
if 'clip_norm' in config:
clip_norm = config.pop('clip_norm')
grad_clip = paddle.nn.ClipGradByNorm(clip_norm=clip_norm)
else:
grad_clip = None
optim = getattr(optimizer, optim_name)(learning_rate=lr, optim = getattr(optimizer, optim_name)(learning_rate=lr,
weight_decay=reg, weight_decay=reg,
grad_clip=grad_clip,
**config) **config)
return optim(parameters), lr return optim(parameters), lr

View File

@ -30,18 +30,25 @@ class Momentum(object):
regularization (WeightDecayRegularizer, optional) - The strategy of regularization. regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
""" """
def __init__(self, learning_rate, momentum, weight_decay=None, **args): def __init__(self,
learning_rate,
momentum,
weight_decay=None,
grad_clip=None,
**args):
super(Momentum, self).__init__() super(Momentum, self).__init__()
self.learning_rate = learning_rate self.learning_rate = learning_rate
self.momentum = momentum self.momentum = momentum
self.weight_decay = weight_decay self.weight_decay = weight_decay
self.grad_clip = grad_clip
def __call__(self, parameters): def __call__(self, parameters):
opt = optim.Momentum( opt = optim.Momentum(
learning_rate=self.learning_rate, learning_rate=self.learning_rate,
momentum=self.momentum, momentum=self.momentum,
parameters=parameters, weight_decay=self.weight_decay,
weight_decay=self.weight_decay) grad_clip=self.grad_clip,
parameters=parameters)
return opt return opt
@ -96,10 +103,11 @@ class RMSProp(object):
def __init__(self, def __init__(self,
learning_rate, learning_rate,
momentum, momentum=0.0,
rho=0.95, rho=0.95,
epsilon=1e-6, epsilon=1e-6,
weight_decay=None, weight_decay=None,
grad_clip=None,
**args): **args):
super(RMSProp, self).__init__() super(RMSProp, self).__init__()
self.learning_rate = learning_rate self.learning_rate = learning_rate
@ -107,6 +115,7 @@ class RMSProp(object):
self.rho = rho self.rho = rho
self.epsilon = epsilon self.epsilon = epsilon
self.weight_decay = weight_decay self.weight_decay = weight_decay
self.grad_clip = grad_clip
def __call__(self, parameters): def __call__(self, parameters):
opt = optim.RMSProp( opt = optim.RMSProp(
@ -115,5 +124,6 @@ class RMSProp(object):
rho=self.rho, rho=self.rho,
epsilon=self.epsilon, epsilon=self.epsilon,
weight_decay=self.weight_decay, weight_decay=self.weight_decay,
grad_clip=self.grad_clip,
parameters=parameters) parameters=parameters)
return opt return opt