Merge pull request #1168 from WenmuZhou/dygraph_rc

delete fluid
This commit is contained in:
Double_V 2020-11-15 15:01:22 +08:00 committed by GitHub
commit 10b54d6696
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 5 additions and 28 deletions

View File

@ -24,7 +24,7 @@ from paddle.nn import functional as F
def get_para_bias_attr(l2_decay, k, name):
regularizer = paddle.fluid.regularizer.L2Decay(l2_decay)
regularizer = paddle.regularizer.L2Decay(l2_decay)
stdv = 1.0 / math.sqrt(k * 1.0)
initializer = nn.initializer.Uniform(-stdv, stdv)
weight_attr = ParamAttr(
@ -33,6 +33,7 @@ def get_para_bias_attr(l2_decay, k, name):
regularizer=regularizer, initializer=initializer, name=name + "_b_attr")
return [weight_attr, bias_attr]
class CTCHead(nn.Layer):
def __init__(self, in_channels, out_channels, fc_decay=0.0004, **kwargs):
super(CTCHead, self).__init__()

View File

@ -17,7 +17,7 @@ from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from paddle import fluid
import paddle
class L1Decay(object):
@ -32,8 +32,7 @@ class L1Decay(object):
self.regularization_coeff = factor
def __call__(self):
reg = fluid.regularizer.L1Decay(
regularization_coeff=self.regularization_coeff)
reg = paddle.regularizer.L1Decay(self.regularization_coeff)
return reg
@ -49,6 +48,5 @@ class L2Decay(object):
self.regularization_coeff = factor
def __call__(self):
reg = fluid.regularizer.L2Decay(
regularization_coeff=self.regularization_coeff)
reg = paddle.regularizer.L2Decay(self.regularization_coeff)
return reg

View File

@ -102,7 +102,6 @@ class CTCLabelDecode(BaseRecLabelDecode):
def __call__(self, preds, label=None, *args, **kwargs):
if isinstance(preds, paddle.Tensor):
preds = preds.numpy()
# out = self.decode_preds(preds)
preds_idx = preds.argmax(axis=2)
preds_prob = preds.max(axis=2)
@ -116,27 +115,6 @@ class CTCLabelDecode(BaseRecLabelDecode):
dict_character = ['blank'] + dict_character
return dict_character
def decode_preds(self, preds):
probs_ind = np.argmax(preds, axis=2)
B, N, _ = preds.shape
l = np.ones(B).astype(np.int64) * N
length = paddle.to_tensor(l)
out = paddle.fluid.layers.ctc_greedy_decoder(preds, 0, length)
batch_res = [
x[:idx[0]] for x, idx in zip(out[0].numpy(), out[1].numpy())
]
result_list = []
for sample_idx, ind, prob in zip(batch_res, probs_ind, preds):
char_list = [self.character[idx] for idx in sample_idx]
valid_ind = np.where(ind != 0)[0]
if len(valid_ind) == 0:
continue
conf_list = prob[valid_ind, ind[valid_ind]]
result_list.append((''.join(char_list), conf_list))
return result_list
class AttnLabelDecode(BaseRecLabelDecode):
""" Convert between text-label and text-index """