Merge pull request #315 from MissPenguin/develop
move out visulization from hubserving
This commit is contained in:
commit
115893904f
|
@ -6,7 +6,6 @@
|
|||
"use_gpu": true
|
||||
},
|
||||
"predict_args": {
|
||||
"visualization": false
|
||||
}
|
||||
}
|
||||
},
|
||||
|
|
|
@ -19,7 +19,7 @@ import numpy as np
|
|||
import paddle.fluid as fluid
|
||||
import paddlehub as hub
|
||||
|
||||
from tools.infer.utility import draw_boxes, base64_to_cv2
|
||||
from tools.infer.utility import base64_to_cv2
|
||||
from tools.infer.predict_det import TextDetector
|
||||
|
||||
|
||||
|
@ -68,16 +68,12 @@ class OCRDet(hub.Module):
|
|||
|
||||
def predict(self,
|
||||
images=[],
|
||||
paths=[],
|
||||
draw_img_save='ocr_det_result',
|
||||
visualization=False):
|
||||
paths=[]):
|
||||
"""
|
||||
Get the text box in the predicted images.
|
||||
Args:
|
||||
images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths
|
||||
paths (list[str]): The paths of images. If paths not images
|
||||
draw_img_save (str): The directory to store output images.
|
||||
visualization (bool): Whether to save image or not.
|
||||
Returns:
|
||||
res (list): The result of text detection box and save path of images.
|
||||
"""
|
||||
|
@ -93,29 +89,21 @@ class OCRDet(hub.Module):
|
|||
|
||||
all_results = []
|
||||
for img in predicted_data:
|
||||
result = {'save_path': ''}
|
||||
if img is None:
|
||||
logger.info("error in loading image")
|
||||
result['data'] = []
|
||||
all_results.append(result)
|
||||
all_results.append([])
|
||||
continue
|
||||
dt_boxes, elapse = self.text_detector(img)
|
||||
print("Predict time : ", elapse)
|
||||
result['data'] = dt_boxes.astype(np.int).tolist()
|
||||
logger.info("Predict time : {}".format(elapse))
|
||||
|
||||
if visualization:
|
||||
image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
||||
draw_img = draw_boxes(image, dt_boxes)
|
||||
draw_img = np.array(draw_img)
|
||||
if not os.path.exists(draw_img_save):
|
||||
os.makedirs(draw_img_save)
|
||||
saved_name = 'ndarray_{}.jpg'.format(time.time())
|
||||
save_file_path = os.path.join(draw_img_save, saved_name)
|
||||
cv2.imwrite(save_file_path, draw_img[:, :, ::-1])
|
||||
print("The visualized image saved in {}".format(save_file_path))
|
||||
result['save_path'] = save_file_path
|
||||
|
||||
all_results.append(result)
|
||||
rec_res_final = []
|
||||
for dno in range(len(dt_boxes)):
|
||||
rec_res_final.append(
|
||||
{
|
||||
'text_region': dt_boxes[dno].astype(np.int).tolist()
|
||||
}
|
||||
)
|
||||
all_results.append(rec_res_final)
|
||||
return all_results
|
||||
|
||||
@serving
|
||||
|
@ -134,5 +122,5 @@ if __name__ == '__main__':
|
|||
'./doc/imgs/11.jpg',
|
||||
'./doc/imgs/12.jpg',
|
||||
]
|
||||
res = ocr.predict(paths=image_path, visualization=True)
|
||||
res = ocr.predict(paths=image_path)
|
||||
print(res)
|
|
@ -92,12 +92,24 @@ class OCRRec(hub.Module):
|
|||
if img is None:
|
||||
continue
|
||||
img_list.append(img)
|
||||
|
||||
rec_res_final = []
|
||||
try:
|
||||
rec_res, predict_time = self.text_recognizer(img_list)
|
||||
for dno in range(len(rec_res)):
|
||||
text, score = rec_res[dno]
|
||||
rec_res_final.append(
|
||||
{
|
||||
'text': text,
|
||||
'confidence': float(score),
|
||||
}
|
||||
)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
return []
|
||||
return rec_res
|
||||
return [[]]
|
||||
|
||||
return [rec_res_final]
|
||||
|
||||
|
||||
@serving
|
||||
def serving_method(self, images, **kwargs):
|
||||
|
|
|
@ -6,7 +6,6 @@
|
|||
"use_gpu": true
|
||||
},
|
||||
"predict_args": {
|
||||
"visualization": false
|
||||
}
|
||||
}
|
||||
},
|
||||
|
|
|
@ -19,7 +19,7 @@ import numpy as np
|
|||
import paddle.fluid as fluid
|
||||
import paddlehub as hub
|
||||
|
||||
from tools.infer.utility import draw_ocr, base64_to_cv2
|
||||
from tools.infer.utility import base64_to_cv2
|
||||
from tools.infer.predict_system import TextSystem
|
||||
|
||||
|
||||
|
@ -68,18 +68,12 @@ class OCRSystem(hub.Module):
|
|||
|
||||
def predict(self,
|
||||
images=[],
|
||||
paths=[],
|
||||
draw_img_save='ocr_result',
|
||||
visualization=False,
|
||||
text_thresh=0.5):
|
||||
paths=[]):
|
||||
"""
|
||||
Get the chinese texts in the predicted images.
|
||||
Args:
|
||||
images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths
|
||||
paths (list[str]): The paths of images. If paths not images
|
||||
draw_img_save (str): The directory to store output images.
|
||||
visualization (bool): Whether to save image or not.
|
||||
text_thresh(float): the threshold of the recognize chinese texts' confidence
|
||||
Returns:
|
||||
res (list): The result of chinese texts and save path of images.
|
||||
"""
|
||||
|
@ -93,53 +87,30 @@ class OCRSystem(hub.Module):
|
|||
|
||||
assert predicted_data != [], "There is not any image to be predicted. Please check the input data."
|
||||
|
||||
cnt = 0
|
||||
all_results = []
|
||||
for img in predicted_data:
|
||||
result = {'save_path': ''}
|
||||
if img is None:
|
||||
logger.info("error in loading image")
|
||||
result['data'] = []
|
||||
all_results.append(result)
|
||||
all_results.append([])
|
||||
continue
|
||||
starttime = time.time()
|
||||
dt_boxes, rec_res = self.text_sys(img)
|
||||
elapse = time.time() - starttime
|
||||
cnt += 1
|
||||
print("Predict time of image %d: %.3fs" % (cnt, elapse))
|
||||
logger.info("Predict time: {}".format(elapse))
|
||||
|
||||
dt_num = len(dt_boxes)
|
||||
rec_res_final = []
|
||||
|
||||
for dno in range(dt_num):
|
||||
text, score = rec_res[dno]
|
||||
# if the recognized text confidence score is lower than text_thresh, then drop it
|
||||
if score >= text_thresh:
|
||||
# text_str = "%s, %.3f" % (text, score)
|
||||
# print(text_str)
|
||||
rec_res_final.append(
|
||||
{
|
||||
'text': text,
|
||||
'confidence': float(score),
|
||||
'text_box_position': dt_boxes[dno].astype(np.int).tolist()
|
||||
'text_region': dt_boxes[dno].astype(np.int).tolist()
|
||||
}
|
||||
)
|
||||
result['data'] = rec_res_final
|
||||
|
||||
if visualization:
|
||||
image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
||||
boxes = dt_boxes
|
||||
txts = [rec_res[i][0] for i in range(len(rec_res))]
|
||||
scores = [rec_res[i][1] for i in range(len(rec_res))]
|
||||
|
||||
draw_img = draw_ocr(image, boxes, txts, scores, draw_txt=True, drop_score=0.5)
|
||||
if not os.path.exists(draw_img_save):
|
||||
os.makedirs(draw_img_save)
|
||||
saved_name = 'ndarray_{}.jpg'.format(time.time())
|
||||
save_file_path = os.path.join(draw_img_save, saved_name)
|
||||
cv2.imwrite(save_file_path, draw_img[:, :, ::-1])
|
||||
print("The visualized image saved in {}".format(save_file_path))
|
||||
result['save_path'] = save_file_path
|
||||
|
||||
all_results.append(result)
|
||||
all_results.append(rec_res_final)
|
||||
return all_results
|
||||
|
||||
@serving
|
||||
|
@ -158,5 +129,5 @@ if __name__ == '__main__':
|
|||
'./doc/imgs/11.jpg',
|
||||
'./doc/imgs/12.jpg',
|
||||
]
|
||||
res = ocr.predict(paths=image_path, visualization=False)
|
||||
res = ocr.predict(paths=image_path)
|
||||
print(res)
|
|
@ -23,8 +23,14 @@ deploy/hubserving/ocr_system/
|
|||
|
||||
## 快速启动服务
|
||||
以下步骤以检测+识别2阶段串联服务为例,如果只需要检测服务或识别服务,替换相应文件路径即可。
|
||||
### 1. 安装paddlehub
|
||||
```pip3 install paddlehub --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple```
|
||||
### 1. 准备环境
|
||||
```shell
|
||||
# 安装paddlehub
|
||||
pip3 install paddlehub --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple
|
||||
|
||||
# 设置环境变量
|
||||
export PYTHONPATH=.
|
||||
```
|
||||
|
||||
### 2. 安装服务模块
|
||||
PaddleOCR提供3种服务模块,根据需要安装所需模块。如:
|
||||
|
@ -75,7 +81,6 @@ $ hub serving start --modules [Module1==Version1, Module2==Version2, ...] \
|
|||
"use_gpu": true
|
||||
},
|
||||
"predict_args": {
|
||||
"visualization": false
|
||||
}
|
||||
}
|
||||
},
|
||||
|
@ -99,32 +104,21 @@ hub serving start -c deploy/hubserving/ocr_system/config.json
|
|||
```
|
||||
|
||||
## 发送预测请求
|
||||
配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果:
|
||||
配置好服务端,可使用以下命令发送预测请求,获取预测结果:
|
||||
|
||||
```python
|
||||
import requests
|
||||
import json
|
||||
import cv2
|
||||
import base64
|
||||
```python tools/test_hubserving.py server_url image_path```
|
||||
|
||||
def cv2_to_base64(image):
|
||||
return base64.b64encode(image).decode('utf8')
|
||||
需要给脚本传递2个参数:
|
||||
- **server_url**:服务地址,格式为
|
||||
`http://[ip_address]:[port]/predict/[module_name]`
|
||||
例如,如果使用配置文件启动检测、识别、检测+识别2阶段服务,那么发送请求的url将分别是:
|
||||
`http://127.0.0.1:8866/predict/ocr_det`
|
||||
`http://127.0.0.1:8867/predict/ocr_rec`
|
||||
`http://127.0.0.1:8868/predict/ocr_system`
|
||||
- **image_path**:测试图像路径,可以是单张图片路径,也可以是图像集合目录路径
|
||||
|
||||
# 发送HTTP请求
|
||||
data = {'images':[cv2_to_base64(open("./doc/imgs/11.jpg", 'rb').read())]}
|
||||
headers = {"Content-type": "application/json"}
|
||||
# url = "http://127.0.0.1:8866/predict/ocr_det"
|
||||
# url = "http://127.0.0.1:8866/predict/ocr_rec"
|
||||
url = "http://127.0.0.1:8866/predict/ocr_system"
|
||||
r = requests.post(url=url, headers=headers, data=json.dumps(data))
|
||||
|
||||
# 打印预测结果
|
||||
print(r.json()["results"])
|
||||
```
|
||||
|
||||
你可能需要根据实际情况修改`url`字符串中的端口号和服务模块名称。
|
||||
|
||||
上面所示代码都已写入测试脚本,可直接运行命令:```python tools/test_hubserving.py```
|
||||
访问示例:
|
||||
```python tools/test_hubserving.py http://127.0.0.1:8868/predict/ocr_system ./doc/imgs/```
|
||||
|
||||
## 自定义修改服务模块
|
||||
如果需要修改服务逻辑,你一般需要操作以下步骤(以修改`ocr_system`为例):
|
||||
|
|
|
@ -117,16 +117,12 @@ def main(args):
|
|||
image_file_list = get_image_file_list(args.image_dir)
|
||||
text_sys = TextSystem(args)
|
||||
is_visualize = True
|
||||
tackle_img_num = 0
|
||||
for image_file in image_file_list:
|
||||
img = cv2.imread(image_file)
|
||||
if img is None:
|
||||
logger.info("error in loading image:{}".format(image_file))
|
||||
continue
|
||||
starttime = time.time()
|
||||
tackle_img_num += 1
|
||||
if not args.use_gpu and tackle_img_num % 30 == 0:
|
||||
text_sys = TextSystem(args)
|
||||
dt_boxes, rec_res = text_sys(img)
|
||||
elapse = time.time() - starttime
|
||||
print("Predict time of %s: %.3fs" % (image_file, elapse))
|
||||
|
|
|
@ -91,7 +91,7 @@ def create_predictor(args, mode):
|
|||
config.enable_use_gpu(args.gpu_mem, 0)
|
||||
else:
|
||||
config.disable_gpu()
|
||||
config.enable_mkldnn()
|
||||
# config.enable_mkldnn()
|
||||
config.set_cpu_math_library_num_threads(4)
|
||||
#config.enable_memory_optim()
|
||||
config.disable_glog_info()
|
||||
|
|
|
@ -1,25 +1,114 @@
|
|||
#!usr/bin/python
|
||||
# -*- coding: utf-8 -*-
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
import sys
|
||||
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append(__dir__)
|
||||
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
|
||||
|
||||
from ppocr.utils.utility import initial_logger
|
||||
logger = initial_logger()
|
||||
import cv2
|
||||
import numpy as np
|
||||
import time
|
||||
from PIL import Image
|
||||
from ppocr.utils.utility import get_image_file_list
|
||||
from tools.infer.utility import draw_ocr, draw_boxes
|
||||
|
||||
import requests
|
||||
import json
|
||||
import cv2
|
||||
import base64
|
||||
import time
|
||||
|
||||
|
||||
def cv2_to_base64(image):
|
||||
return base64.b64encode(image).decode('utf8')
|
||||
|
||||
start = time.time()
|
||||
# 发送HTTP请求
|
||||
data = {'images':[cv2_to_base64(open("./doc/imgs/11.jpg", 'rb').read())]}
|
||||
headers = {"Content-type": "application/json"}
|
||||
# url = "http://127.0.0.1:8866/predict/ocr_det"
|
||||
# url = "http://127.0.0.1:8866/predict/ocr_rec"
|
||||
url = "http://127.0.0.1:8866/predict/ocr_system"
|
||||
r = requests.post(url=url, headers=headers, data=json.dumps(data))
|
||||
end = time.time()
|
||||
|
||||
# 打印预测结果
|
||||
print(r.json()["results"])
|
||||
print("time cost: ", end - start)
|
||||
def draw_server_result(image_file, res):
|
||||
img = cv2.imread(image_file)
|
||||
image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
||||
if len(res) == 0:
|
||||
return np.array(image)
|
||||
keys = res[0].keys()
|
||||
if 'text_region' not in keys: # for ocr_rec, draw function is invalid
|
||||
print("draw function is invalid for ocr_rec!")
|
||||
return None
|
||||
elif 'text' not in keys: # for ocr_det
|
||||
print("draw text boxes only!")
|
||||
boxes = []
|
||||
for dno in range(len(res)):
|
||||
boxes.append(res[dno]['text_region'])
|
||||
boxes = np.array(boxes)
|
||||
draw_img = draw_boxes(image, boxes)
|
||||
return draw_img
|
||||
else: # for ocr_system
|
||||
print("draw boxes and texts!")
|
||||
boxes = []
|
||||
texts = []
|
||||
scores = []
|
||||
for dno in range(len(res)):
|
||||
boxes.append(res[dno]['text_region'])
|
||||
texts.append(res[dno]['text'])
|
||||
scores.append(res[dno]['confidence'])
|
||||
boxes = np.array(boxes)
|
||||
scores = np.array(scores)
|
||||
draw_img = draw_ocr(image, boxes, texts, scores, draw_txt=True, drop_score=0.5)
|
||||
return draw_img
|
||||
|
||||
|
||||
def main(url, image_path):
|
||||
image_file_list = get_image_file_list(image_path)
|
||||
is_visualize = False
|
||||
headers = {"Content-type": "application/json"}
|
||||
cnt = 0
|
||||
total_time = 0
|
||||
for image_file in image_file_list:
|
||||
img = open(image_file, 'rb').read()
|
||||
if img is None:
|
||||
logger.info("error in loading image:{}".format(image_file))
|
||||
continue
|
||||
|
||||
# 发送HTTP请求
|
||||
starttime = time.time()
|
||||
data = {'images':[cv2_to_base64(img)]}
|
||||
r = requests.post(url=url, headers=headers, data=json.dumps(data))
|
||||
elapse = time.time() - starttime
|
||||
total_time += elapse
|
||||
print("Predict time of %s: %.3fs" % (image_file, elapse))
|
||||
res = r.json()["results"][0]
|
||||
# print(res)
|
||||
|
||||
if is_visualize:
|
||||
draw_img = draw_server_result(image_file, res)
|
||||
if draw_img is not None:
|
||||
draw_img_save = "./server_results/"
|
||||
if not os.path.exists(draw_img_save):
|
||||
os.makedirs(draw_img_save)
|
||||
cv2.imwrite(
|
||||
os.path.join(draw_img_save, os.path.basename(image_file)),
|
||||
draw_img[:, :, ::-1])
|
||||
print("The visualized image saved in {}".format(
|
||||
os.path.join(draw_img_save, os.path.basename(image_file))))
|
||||
cnt += 1
|
||||
if cnt % 100 == 0:
|
||||
print(cnt, "processed")
|
||||
print("avg time cost: ", float(total_time)/cnt)
|
||||
|
||||
if __name__ == '__main__':
|
||||
if len(sys.argv) != 3:
|
||||
print("Usage: %s server_url image_path" % sys.argv[0])
|
||||
else:
|
||||
server_url = sys.argv[1]
|
||||
image_path = sys.argv[2]
|
||||
main(server_url, image_path)
|
Loading…
Reference in New Issue