添加分类模型

This commit is contained in:
WenmuZhou 2020-09-14 10:41:43 +08:00
parent 567c74c508
commit 144b022fb6
16 changed files with 486 additions and 70 deletions

View File

@ -1,21 +1,22 @@
Global: Global:
algorithm: CLS algorithm: CLS
use_gpu: false use_gpu: False
epoch_num: 30 epoch_num: 100
log_smooth_window: 20 log_smooth_window: 20
print_batch_step: 10 print_batch_step: 100
save_model_dir: output/cls_mb3 save_model_dir: output/cls_mv3
save_epoch_step: 3 save_epoch_step: 3
eval_batch_step: 100 eval_batch_step: 500
train_batch_size_per_card: 256 train_batch_size_per_card: 512
test_batch_size_per_card: 256 test_batch_size_per_card: 512
image_shape: [3, 32, 100] image_shape: [3, 48, 192]
label_list: [0,180] label_list: ['0','180']
distort: True
reader_yml: ./configs/cls/cls_reader.yml reader_yml: ./configs/cls/cls_reader.yml
pretrain_weights: pretrain_weights:
checkpoints: /Users/zhoujun20/Desktop/code/class_model/cls_mb3_ultra_small_0.35/best_accuracy checkpoints:
save_inference_dir: save_inference_dir:
infer_img: /Users/zhoujun20/Desktop/code/PaddleOCR/doc/imgs_words/ch/word_1.jpg infer_img:
Architecture: Architecture:
function: ppocr.modeling.architectures.cls_model,ClsModel function: ppocr.modeling.architectures.cls_model,ClsModel
@ -23,7 +24,7 @@ Architecture:
Backbone: Backbone:
function: ppocr.modeling.backbones.rec_mobilenet_v3,MobileNetV3 function: ppocr.modeling.backbones.rec_mobilenet_v3,MobileNetV3
scale: 0.35 scale: 0.35
model_name: Ultra_small model_name: small
Head: Head:
function: ppocr.modeling.heads.cls_head,ClsHead function: ppocr.modeling.heads.cls_head,ClsHead
@ -38,6 +39,6 @@ Optimizer:
beta1: 0.9 beta1: 0.9
beta2: 0.999 beta2: 0.999
decay: decay:
function: piecewise_decay function: cosine_decay
boundaries: [20,30] step_each_epoch: 1169
decay_rate: 0.1 total_epoch: 100

View File

@ -1,13 +1,13 @@
TrainReader: TrainReader:
reader_function: ppocr.data.cls.dataset_traversal,SimpleReader reader_function: ppocr.data.cls.dataset_traversal,SimpleReader
num_workers: 1 num_workers: 8
img_set_dir: / img_set_dir: ./train_data/cls
label_file_path: /Users/zhoujun20/Downloads/direction/rotate_ver/train.txt label_file_path: ./train_data/cls/train.txt
EvalReader: EvalReader:
reader_function: ppocr.data.cls.dataset_traversal,SimpleReader reader_function: ppocr.data.cls.dataset_traversal,SimpleReader
img_set_dir: / img_set_dir: ./train_data/cls
label_file_path: /Users/zhoujun20/Downloads/direction/rotate_ver/train.txt label_file_path: ./train_data/cls/test.txt
TestReader: TestReader:
reader_function: ppocr.data.cls.dataset_traversal,SimpleReader reader_function: ppocr.data.cls.dataset_traversal,SimpleReader

View File

@ -57,6 +57,8 @@ public:
this->char_list_file.assign(config_map_["char_list_file"]); this->char_list_file.assign(config_map_["char_list_file"]);
this->use_angle_cls = bool(stoi(config_map_["use_angle_cls"]));
this->cls_model_dir.assign(config_map_["cls_model_dir"]); this->cls_model_dir.assign(config_map_["cls_model_dir"]);
this->cls_thresh = stod(config_map_["cls_thresh"]); this->cls_thresh = stod(config_map_["cls_thresh"]);
@ -88,6 +90,8 @@ public:
std::string rec_model_dir; std::string rec_model_dir;
bool use_angle_cls;
std::string char_list_file; std::string char_list_file;
std::string cls_model_dir; std::string cls_model_dir;

View File

@ -58,7 +58,7 @@ public:
void LoadModel(const std::string &model_dir); void LoadModel(const std::string &model_dir);
void Run(std::vector<std::vector<std::vector<int>>> boxes, cv::Mat &img, void Run(std::vector<std::vector<std::vector<int>>> boxes, cv::Mat &img,
Classifier &cls); Classifier *cls);
private: private:
std::shared_ptr<PaddlePredictor> predictor_; std::shared_ptr<PaddlePredictor> predictor_;

View File

@ -53,10 +53,15 @@ int main(int argc, char **argv) {
config.cpu_math_library_num_threads, config.use_mkldnn, config.cpu_math_library_num_threads, config.use_mkldnn,
config.use_zero_copy_run, config.max_side_len, config.det_db_thresh, config.use_zero_copy_run, config.max_side_len, config.det_db_thresh,
config.det_db_box_thresh, config.det_db_unclip_ratio, config.visualize); config.det_db_box_thresh, config.det_db_unclip_ratio, config.visualize);
Classifier cls(config.cls_model_dir, config.use_gpu, config.gpu_id,
config.gpu_mem, config.cpu_math_library_num_threads, Classifier *cls = nullptr;
config.use_mkldnn, config.use_zero_copy_run, if (config.use_angle_cls == true) {
config.cls_thresh); cls = new Classifier(config.cls_model_dir, config.use_gpu, config.gpu_id,
config.gpu_mem, config.cpu_math_library_num_threads,
config.use_mkldnn, config.use_zero_copy_run,
config.cls_thresh);
}
CRNNRecognizer rec(config.rec_model_dir, config.use_gpu, config.gpu_id, CRNNRecognizer rec(config.rec_model_dir, config.use_gpu, config.gpu_id,
config.gpu_mem, config.cpu_math_library_num_threads, config.gpu_mem, config.cpu_math_library_num_threads,
config.use_mkldnn, config.use_zero_copy_run, config.use_mkldnn, config.use_zero_copy_run,

View File

@ -17,7 +17,7 @@
namespace PaddleOCR { namespace PaddleOCR {
void CRNNRecognizer::Run(std::vector<std::vector<std::vector<int>>> boxes, void CRNNRecognizer::Run(std::vector<std::vector<std::vector<int>>> boxes,
cv::Mat &img, Classifier &cls) { cv::Mat &img, Classifier *cls) {
cv::Mat srcimg; cv::Mat srcimg;
img.copyTo(srcimg); img.copyTo(srcimg);
cv::Mat crop_img; cv::Mat crop_img;
@ -27,8 +27,9 @@ void CRNNRecognizer::Run(std::vector<std::vector<std::vector<int>>> boxes,
int index = 0; int index = 0;
for (int i = boxes.size() - 1; i >= 0; i--) { for (int i = boxes.size() - 1; i >= 0; i--) {
crop_img = GetRotateCropImage(srcimg, boxes[i]); crop_img = GetRotateCropImage(srcimg, boxes[i]);
if (cls != nullptr) {
crop_img = cls.Run(crop_img); crop_img = cls->Run(crop_img);
}
float wh_ratio = float(crop_img.cols) / float(crop_img.rows); float wh_ratio = float(crop_img.cols) / float(crop_img.rows);

View File

@ -4,23 +4,23 @@ gpu_id 0
gpu_mem 4000 gpu_mem 4000
cpu_math_library_num_threads 10 cpu_math_library_num_threads 10
use_mkldnn 0 use_mkldnn 0
use_zero_copy_run 1 use_zero_copy_run 0
# det config # det config
max_side_len 960 max_side_len 960
det_db_thresh 0.3 det_db_thresh 0.3
det_db_box_thresh 0.5 det_db_box_thresh 0.5
det_db_unclip_ratio 2.0 det_db_unclip_ratio 2.0
det_model_dir ./inference/det_db det_model_dir ../model/det
# cls config # cls config
cls_model_dir ./inference/cls use_angle_cls 1
cls_model_dir ../model/cls
cls_thresh 0.9 cls_thresh 0.9
# rec config # rec config
rec_model_dir ./inference/rec_crnn rec_model_dir ../model/rec
char_list_file ../../ppocr/utils/ppocr_keys_v1.txt char_list_file ../model/ppocr_keys_v1.txt
# show the detection results # show the detection results
visualize 1 visualize 1

127
doc/doc_ch/angle_class.md Normal file
View File

@ -0,0 +1,127 @@
## 文字角度分类
### 数据准备
请按如下步骤设置数据集:
训练数据的默认存储路径是 `PaddleOCR/train_data/cls`,如果您的磁盘上已有数据集,只需创建软链接至数据集目录:
```
ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/cls/dataset
```
请参考下文组织您的数据。
- 训练集
首先请将训练图片放入同一个文件夹train_images并用一个txt文件cls_gt_train.txt记录图片路径和标签。
**注意:** 默认请将图片路径和图片标签用 `\t` 分割,如用其他方式分割将造成训练报错
0和180分别表示图片的角度为0度和180度
```
" 图像文件名 图像标注信息 "
train_data/cls/word_001.jpg 0
train_data/cls/word_002.jpg 180
```
最终训练集应有如下文件结构:
```
|-train_data
|-cls
|- cls_gt_train.txt
|- train
|- word_001.png
|- word_002.jpg
|- word_003.jpg
| ...
```
- 测试集
同训练集类似测试集也需要提供一个包含所有图片的文件夹test和一个cls_gt_test.txt测试集的结构如下所示
```
|-train_data
|-cls
|- 和一个cls_gt_test.txt
|- test
|- word_001.jpg
|- word_002.jpg
|- word_003.jpg
| ...
```
### 启动训练
PaddleOCR提供了训练脚本、评估脚本和预测脚本。
开始训练:
*如果您安装的是cpu版本请将配置文件中的 `use_gpu` 字段修改为false*
```
# 设置PYTHONPATH路径
export PYTHONPATH=$PYTHONPATH:.
# GPU训练 支持单卡多卡训练通过CUDA_VISIBLE_DEVICES指定卡号
export CUDA_VISIBLE_DEVICES=0,1,2,3
# 启动训练
python3 tools/train.py -c configs/cls/cls_mv3.yml
```
- 数据增强
PaddleOCR提供了多种数据增强方式如果您希望在训练时加入扰动请在配置文件中设置 `distort: true`
默认的扰动方式有:颜色空间转换(cvtColor)、模糊(blur)、抖动(jitter)、噪声(Gasuss noise)、随机切割(random crop)、透视(perspective)、颜色反转(reverse),随机数据增强(RandAugment)。
训练过程中除随机数据增强外每种扰动方式以50%的概率被选择,具体代码实现请参考:
[randaugment.py.py](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/ppocr/data/cls/randaugment.py)
[img_tools.py](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/ppocr/data/rec/img_tools.py)
*由于OpenCV的兼容性问题扰动操作暂时只支持linux*
### 训练
PaddleOCR支持训练和评估交替进行, 可以在 `configs/cls/cls_mv3.yml` 中修改 `eval_batch_step` 设置评估频率默认每500个iter评估一次。评估过程中默认将最佳acc模型保存为 `output/cls_mv3/best_accuracy`
如果验证集很大,测试将会比较耗时,建议减少评估次数,或训练完再进行评估。
**注意,预测/评估时的配置文件请务必与训练一致。**
### 评估
评估数据集可以通过`configs/cls/cls_reader.yml` 修改EvalReader中的 `label_file_path` 设置。
*注意* 评估时必须确保配置文件中 infer_img 字段为空
```
export CUDA_VISIBLE_DEVICES=0
# GPU 评估, Global.checkpoints 为待测权重
python3 tools/eval.py -c configs/cls/cls_mv3.yml -o Global.checkpoints={path/to/weights}/best_accuracy
```
### 预测
* 训练引擎的预测
使用 PaddleOCR 训练好的模型,可以通过以下脚本进行快速预测。
默认预测图片存储在 `infer_img` 里,通过 `-o Global.checkpoints` 指定权重:
```
# 预测分类结果
python3 tools/infer_cls.py -c configs/cls/cls_mv3.yml -o Global.checkpoints={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
```
预测图片:
![](../imgs_words/en/word_1.png)
得到输入图像的预测结果:
```
infer_img: doc/imgs_words/en/word_1.png
scores: [[0.93161047 0.06838956]]
label: [0]
```

View File

@ -0,0 +1,126 @@
## TEXT ANGLE CLASSIFICATION
### DATA PREPARATION
Please organize the dataset as follows:
The default storage path for training data is `PaddleOCR/train_data/cls`, if you already have a dataset on your disk, just create a soft link to the dataset directory:
```
ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/cls/dataset
```
please refer to the following to organize your data.
- Training set
First put the training images in the same folder (train_images), and use a txt file (cls_gt_train.txt) to store the image path and label.
* Note: by default, the image path and image label are split with `\t`, if you use other methods to split, it will cause training error
0 and 180 indicate that the angle of the image is 0 degrees and 180 degrees, respectively.
```
" Image file name Image annotation "
train_data/word_001.jpg 0
train_data/word_002.jpg 180
```
The final training set should have the following file structure:
```
|-train_data
|-cls
|- cls_gt_train.txt
|- train
|- word_001.png
|- word_002.jpg
|- word_003.jpg
| ...
```
- Test set
Similar to the training set, the test set also needs to be provided a folder
containing all images (test) and a cls_gt_test.txt. The structure of the test set is as follows:
```
|-train_data
|-cls
|- cls_gt_test.txt
|- test
|- word_001.jpg
|- word_002.jpg
|- word_003.jpg
| ...
```
### TRAINING
PaddleOCR provides training scripts, evaluation scripts, and prediction scripts.
Start training:
```
# Set PYTHONPATH path
export PYTHONPATH=$PYTHONPATH:.
# GPU training Support single card and multi-card training, specify the card number through CUDA_VISIBLE_DEVICES
export CUDA_VISIBLE_DEVICES=0,1,2,3
# Training icdar15 English data
python3 tools/train.py -c configs/cls/cls_mv3.yml
```
- Data Augmentation
PaddleOCR provides a variety of data augmentation methods. If you want to add disturbance during training, please set `distort: true` in the configuration file.
The default perturbation methods are: cvtColor, blur, jitter, Gasuss noise, random crop, perspective, color reverse, RandAugment.
Except for RandAugment, each disturbance method is selected with a 50% probability during the training process. For specific code implementation, please refer to:
[randaugment.py.py](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/ppocr/data/cls/randaugment.py)
[img_tools.py](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/ppocr/data/rec/img_tools.py)
- Training
PaddleOCR supports alternating training and evaluation. You can modify `eval_batch_step` in `configs/cls/cls_mv3.yml` to set the evaluation frequency. By default, it is evaluated every 500 iter and the best acc model is saved under `output/cls_mv3/best_accuracy` during the evaluation process.
If the evaluation set is large, the test will be time-consuming. It is recommended to reduce the number of evaluations, or evaluate after training.
**Note that the configuration file for prediction/evaluation must be consistent with the training.**
### EVALUATION
The evaluation data set can be modified via `configs/cls/cls_reader.yml` setting of `label_file_path` in EvalReader.
```
export CUDA_VISIBLE_DEVICES=0
# GPU evaluation, Global.checkpoints is the weight to be tested
python3 tools/eval.py -c configs/cls/cls_mv3.yml -o Global.checkpoints={path/to/weights}/best_accuracy
```
### PREDICTION
* Training engine prediction
Using the model trained by paddleocr, you can quickly get prediction through the following script.
The default prediction picture is stored in `infer_img`, and the weight is specified via `-o Global.checkpoints`:
```
# Predict English results
python3 tools/infer_rec.py -c configs/cls/cls_mv3.yml -o Global.checkpoints={path/to/weights}/best_accuracy TestReader.infer_img=doc/imgs_words/en/word_1.jpg
```
Input image:
![](../imgs_words/en/word_1.png)
Get the prediction result of the input image:
```
infer_img: doc/imgs_words/en/word_1.png
scores: [[0.93161047 0.06838956]]
label: [0]
```

View File

@ -14,6 +14,7 @@
import os import os
import sys import sys
import math
import random import random
import numpy as np import numpy as np
import cv2 import cv2
@ -23,7 +24,18 @@ from ppocr.utils.utility import get_image_file_list
logger = initial_logger() logger = initial_logger()
from ppocr.data.rec.img_tools import warp, resize_norm_img from ppocr.data.rec.img_tools import resize_norm_img, warp
from ppocr.data.cls.randaugment import RandAugment
def random_crop(img):
img_h, img_w = img.shape[:2]
if img_w > img_h * 4:
w = random.randint(img_h * 2, img_w)
i = random.randint(0, img_w - w)
img = img[:, i:i + w, :]
return img
class SimpleReader(object): class SimpleReader(object):
@ -39,7 +51,8 @@ class SimpleReader(object):
self.image_shape = params['image_shape'] self.image_shape = params['image_shape']
self.mode = params['mode'] self.mode = params['mode']
self.infer_img = params['infer_img'] self.infer_img = params['infer_img']
self.use_distort = False self.use_distort = params['mode'] == 'train' and params['distort']
self.randaug = RandAugment()
self.label_list = params['label_list'] self.label_list = params['label_list']
if "distort" in params: if "distort" in params:
self.use_distort = params['distort'] and params['use_gpu'] self.use_distort = params['distort'] and params['use_gpu']
@ -76,6 +89,7 @@ class SimpleReader(object):
if img.shape[-1] == 1 or len(list(img.shape)) == 2: if img.shape[-1] == 1 or len(list(img.shape)) == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
norm_img = resize_norm_img(img, self.image_shape) norm_img = resize_norm_img(img, self.image_shape)
norm_img = norm_img[np.newaxis, :] norm_img = norm_img[np.newaxis, :]
yield norm_img yield norm_img
else: else:
@ -97,6 +111,8 @@ class SimpleReader(object):
for img_id in range(process_id, img_num, self.num_workers): for img_id in range(process_id, img_num, self.num_workers):
label_infor = label_infor_list[img_id_list[img_id]] label_infor = label_infor_list[img_id_list[img_id]]
substr = label_infor.decode('utf-8').strip("\n").split("\t") substr = label_infor.decode('utf-8').strip("\n").split("\t")
label = self.label_list.index(substr[1])
img_path = self.img_set_dir + "/" + substr[0] img_path = self.img_set_dir + "/" + substr[0]
img = cv2.imread(img_path) img = cv2.imread(img_path)
if img is None: if img is None:
@ -105,12 +121,14 @@ class SimpleReader(object):
if img.shape[-1] == 1 or len(list(img.shape)) == 2: if img.shape[-1] == 1 or len(list(img.shape)) == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
label = substr[1]
if self.use_distort: if self.use_distort:
# if random.randint(1, 100)>= 50:
# img = random_crop(img)
img = warp(img, 10) img = warp(img, 10)
img = self.randaug(img)
norm_img = resize_norm_img(img, self.image_shape) norm_img = resize_norm_img(img, self.image_shape)
norm_img = norm_img[np.newaxis, :] norm_img = norm_img[np.newaxis, :]
yield (norm_img, self.label_list.index(int(label))) yield (norm_img, label)
def batch_iter_reader(): def batch_iter_reader():
batch_outs = [] batch_outs = []

View File

@ -0,0 +1,135 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from PIL import Image, ImageEnhance, ImageOps
import numpy as np
import random
import six
class RawRandAugment(object):
def __init__(self, num_layers=2, magnitude=5, fillcolor=(128, 128, 128)):
self.num_layers = num_layers
self.magnitude = magnitude
self.max_level = 10
abso_level = self.magnitude / self.max_level
self.level_map = {
"shearX": 0.3 * abso_level,
"shearY": 0.3 * abso_level,
"translateX": 150.0 / 331 * abso_level,
"translateY": 150.0 / 331 * abso_level,
"rotate": 30 * abso_level,
"color": 0.9 * abso_level,
"posterize": int(4.0 * abso_level),
"solarize": 256.0 * abso_level,
"contrast": 0.9 * abso_level,
"sharpness": 0.9 * abso_level,
"brightness": 0.9 * abso_level,
"autocontrast": 0,
"equalize": 0,
"invert": 0
}
# from https://stackoverflow.com/questions/5252170/
# specify-image-filling-color-when-rotating-in-python-with-pil-and-setting-expand
def rotate_with_fill(img, magnitude):
rot = img.convert("RGBA").rotate(magnitude)
return Image.composite(rot,
Image.new("RGBA", rot.size, (128, ) * 4),
rot).convert(img.mode)
rnd_ch_op = random.choice
self.func = {
"shearX": lambda img, magnitude: img.transform(
img.size,
Image.AFFINE,
(1, magnitude * rnd_ch_op([-1, 1]), 0, 0, 1, 0),
Image.BICUBIC,
fillcolor=fillcolor),
"shearY": lambda img, magnitude: img.transform(
img.size,
Image.AFFINE,
(1, 0, 0, magnitude * rnd_ch_op([-1, 1]), 1, 0),
Image.BICUBIC,
fillcolor=fillcolor),
"translateX": lambda img, magnitude: img.transform(
img.size,
Image.AFFINE,
(1, 0, magnitude * img.size[0] * rnd_ch_op([-1, 1]), 0, 1, 0),
fillcolor=fillcolor),
"translateY": lambda img, magnitude: img.transform(
img.size,
Image.AFFINE,
(1, 0, 0, 0, 1, magnitude * img.size[1] * rnd_ch_op([-1, 1])),
fillcolor=fillcolor),
"rotate": lambda img, magnitude: rotate_with_fill(img, magnitude),
"color": lambda img, magnitude: ImageEnhance.Color(img).enhance(
1 + magnitude * rnd_ch_op([-1, 1])),
"posterize": lambda img, magnitude:
ImageOps.posterize(img, magnitude),
"solarize": lambda img, magnitude:
ImageOps.solarize(img, magnitude),
"contrast": lambda img, magnitude:
ImageEnhance.Contrast(img).enhance(
1 + magnitude * rnd_ch_op([-1, 1])),
"sharpness": lambda img, magnitude:
ImageEnhance.Sharpness(img).enhance(
1 + magnitude * rnd_ch_op([-1, 1])),
"brightness": lambda img, magnitude:
ImageEnhance.Brightness(img).enhance(
1 + magnitude * rnd_ch_op([-1, 1])),
"autocontrast": lambda img, magnitude:
ImageOps.autocontrast(img),
"equalize": lambda img, magnitude: ImageOps.equalize(img),
"invert": lambda img, magnitude: ImageOps.invert(img)
}
def __call__(self, img):
avaiable_op_names = list(self.level_map.keys())
for layer_num in range(self.num_layers):
op_name = np.random.choice(avaiable_op_names)
img = self.func[op_name](img, self.level_map[op_name])
return img
class RandAugment(RawRandAugment):
""" RandAugment wrapper to auto fit different img types """
def __init__(self, *args, **kwargs):
if six.PY2:
super(RandAugment, self).__init__(*args, **kwargs)
else:
super().__init__(*args, **kwargs)
def __call__(self, img):
if not isinstance(img, Image.Image):
img = np.ascontiguousarray(img)
img = Image.fromarray(img)
if six.PY2:
img = super(RandAugment, self).__call__(img)
else:
img = super().__call__(img)
if isinstance(img, Image.Image):
img = np.asarray(img)
return img

View File

@ -16,12 +16,9 @@ from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
import logging
import numpy as np import numpy as np
import paddle.fluid as fluid __all__ = ['eval_cls_run']
__all__ = ['eval_class_run']
import logging import logging
@ -52,7 +49,8 @@ def eval_cls_run(exe, eval_info_dict):
fetch_list=eval_info_dict['fetch_varname_list'], \ fetch_list=eval_info_dict['fetch_varname_list'], \
return_numpy=False) return_numpy=False)
softmax_outs = np.array(outs[1]) softmax_outs = np.array(outs[1])
if len(softmax_outs.shape) != 1:
softmax_outs = np.array(outs[0])
acc, acc_num = cal_cls_acc(softmax_outs, label_list) acc, acc_num = cal_cls_acc(softmax_outs, label_list)
total_acc_num += acc_num total_acc_num += acc_num
total_sample_num += len(label_list) total_sample_num += len(label_list)

View File

@ -108,7 +108,7 @@ class TextClassifier(object):
score = prob_out[rno][label_idx] score = prob_out[rno][label_idx]
label = self.label_list[label_idx] label = self.label_list[label_idx]
cls_res[indices[beg_img_no + rno]] = [label, score] cls_res[indices[beg_img_no + rno]] = [label, score]
if label == 180: if '180' in label and score > 0.9999:
img_list[indices[beg_img_no + rno]] = cv2.rotate( img_list[indices[beg_img_no + rno]] = cv2.rotate(
img_list[indices[beg_img_no + rno]], 1) img_list[indices[beg_img_no + rno]], 1)
return img_list, cls_res, predict_time return img_list, cls_res, predict_time
@ -130,12 +130,6 @@ def main(args):
img_list.append(img) img_list.append(img)
try: try:
img_list, cls_res, predict_time = text_classifier(img_list) img_list, cls_res, predict_time = text_classifier(img_list)
print(cls_res)
from matplotlib import pyplot as plt
for img, angle in zip(img_list, cls_res):
plt.title(str(angle))
plt.imshow(img)
plt.show()
except Exception as e: except Exception as e:
print(e) print(e)
exit() exit()

View File

@ -40,7 +40,9 @@ class TextSystem(object):
def __init__(self, args): def __init__(self, args):
self.text_detector = predict_det.TextDetector(args) self.text_detector = predict_det.TextDetector(args)
self.text_recognizer = predict_rec.TextRecognizer(args) self.text_recognizer = predict_rec.TextRecognizer(args)
self.text_classifier = predict_cls.TextClassifier(args) self.use_angle_cls = args.use_angle_cls
if self.use_angle_cls:
self.text_classifier = predict_cls.TextClassifier(args)
def get_rotate_crop_image(self, img, points): def get_rotate_crop_image(self, img, points):
''' '''
@ -95,10 +97,12 @@ class TextSystem(object):
tmp_box = copy.deepcopy(dt_boxes[bno]) tmp_box = copy.deepcopy(dt_boxes[bno])
img_crop = self.get_rotate_crop_image(ori_im, tmp_box) img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
img_crop_list.append(img_crop) img_crop_list.append(img_crop)
img_rotate_list, angle_list, elapse = self.text_classifier( if self.use_angle_cls:
img_crop_list) img_crop_list, angle_list, elapse = self.text_classifier(
print("cls num : {}, elapse : {}".format(len(img_rotate_list), elapse)) img_crop_list)
rec_res, elapse = self.text_recognizer(img_rotate_list) print("cls num : {}, elapse : {}".format(
len(img_crop_list), elapse))
rec_res, elapse = self.text_recognizer(img_crop_list)
print("rec_res num : {}, elapse : {}".format(len(rec_res), elapse)) print("rec_res num : {}, elapse : {}".format(len(rec_res), elapse))
# self.print_draw_crop_rec_res(img_crop_list, rec_res) # self.print_draw_crop_rec_res(img_crop_list, rec_res)
return dt_boxes, rec_res return dt_boxes, rec_res

View File

@ -15,6 +15,7 @@
import argparse import argparse
import os, sys import os, sys
from ppocr.utils.utility import initial_logger from ppocr.utils.utility import initial_logger
logger = initial_logger() logger = initial_logger()
from paddle.fluid.core import PaddleTensor from paddle.fluid.core import PaddleTensor
from paddle.fluid.core import AnalysisConfig from paddle.fluid.core import AnalysisConfig
@ -31,34 +32,34 @@ def parse_args():
return v.lower() in ("true", "t", "1") return v.lower() in ("true", "t", "1")
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
#params for prediction engine # params for prediction engine
parser.add_argument("--use_gpu", type=str2bool, default=True) parser.add_argument("--use_gpu", type=str2bool, default=True)
parser.add_argument("--ir_optim", type=str2bool, default=True) parser.add_argument("--ir_optim", type=str2bool, default=True)
parser.add_argument("--use_tensorrt", type=str2bool, default=False) parser.add_argument("--use_tensorrt", type=str2bool, default=False)
parser.add_argument("--gpu_mem", type=int, default=8000) parser.add_argument("--gpu_mem", type=int, default=8000)
#params for text detector # params for text detector
parser.add_argument("--image_dir", type=str) parser.add_argument("--image_dir", type=str)
parser.add_argument("--det_algorithm", type=str, default='DB') parser.add_argument("--det_algorithm", type=str, default='DB')
parser.add_argument("--det_model_dir", type=str) parser.add_argument("--det_model_dir", type=str)
parser.add_argument("--det_max_side_len", type=float, default=960) parser.add_argument("--det_max_side_len", type=float, default=960)
#DB parmas # DB parmas
parser.add_argument("--det_db_thresh", type=float, default=0.3) parser.add_argument("--det_db_thresh", type=float, default=0.3)
parser.add_argument("--det_db_box_thresh", type=float, default=0.5) parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
parser.add_argument("--det_db_unclip_ratio", type=float, default=2.0) parser.add_argument("--det_db_unclip_ratio", type=float, default=2.0)
#EAST parmas # EAST parmas
parser.add_argument("--det_east_score_thresh", type=float, default=0.8) parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
parser.add_argument("--det_east_cover_thresh", type=float, default=0.1) parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
parser.add_argument("--det_east_nms_thresh", type=float, default=0.2) parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)
#SAST parmas # SAST parmas
parser.add_argument("--det_sast_score_thresh", type=float, default=0.5) parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2) parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
parser.add_argument("--det_sast_polygon", type=bool, default=False) parser.add_argument("--det_sast_polygon", type=bool, default=False)
#params for text recognizer # params for text recognizer
parser.add_argument("--rec_algorithm", type=str, default='CRNN') parser.add_argument("--rec_algorithm", type=str, default='CRNN')
parser.add_argument("--rec_model_dir", type=str) parser.add_argument("--rec_model_dir", type=str)
parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320") parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
@ -72,13 +73,14 @@ def parse_args():
parser.add_argument("--use_space_char", type=bool, default=True) parser.add_argument("--use_space_char", type=bool, default=True)
# params for text classifier # params for text classifier
parser.add_argument("--use_angle_cls", type=str2bool, default=True)
parser.add_argument("--cls_model_dir", type=str) parser.add_argument("--cls_model_dir", type=str)
parser.add_argument("--cls_image_shape", type=str, default="3, 32, 100") parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
parser.add_argument("--label_list", type=list, default=[0, 180]) parser.add_argument("--label_list", type=list, default=['0', '180'])
parser.add_argument("--cls_batch_num", type=int, default=30) parser.add_argument("--cls_batch_num", type=int, default=30)
parser.add_argument("--enable_mkldnn", type=bool, default=False) parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
parser.add_argument("--use_zero_copy_run", type=bool, default=False) parser.add_argument("--use_zero_copy_run", type=str2bool, default=False)
return parser.parse_args() return parser.parse_args()
@ -112,7 +114,7 @@ def create_predictor(args, mode):
if args.enable_mkldnn: if args.enable_mkldnn:
config.enable_mkldnn() config.enable_mkldnn()
#config.enable_memory_optim() # config.enable_memory_optim()
config.disable_glog_info() config.disable_glog_info()
if args.use_zero_copy_run: if args.use_zero_copy_run:

View File

@ -85,9 +85,10 @@ def main():
feed={"image": img}, feed={"image": img},
fetch_list=fetch_varname_list, fetch_list=fetch_varname_list,
return_numpy=False) return_numpy=False)
for k in predict: scores = np.array(predict[0])
k = np.array(k) label = np.array(predict[1])
print(k) logger.info('\t scores: {}'.format(scores))
logger.info('\t label: {}'.format(label))
# save for inference model # save for inference model
target_var = [] target_var = []
for key, values in outputs.items(): for key, values in outputs.items():