添加分类模型
This commit is contained in:
parent
567c74c508
commit
144b022fb6
|
@ -1,21 +1,22 @@
|
|||
Global:
|
||||
algorithm: CLS
|
||||
use_gpu: false
|
||||
epoch_num: 30
|
||||
use_gpu: False
|
||||
epoch_num: 100
|
||||
log_smooth_window: 20
|
||||
print_batch_step: 10
|
||||
save_model_dir: output/cls_mb3
|
||||
print_batch_step: 100
|
||||
save_model_dir: output/cls_mv3
|
||||
save_epoch_step: 3
|
||||
eval_batch_step: 100
|
||||
train_batch_size_per_card: 256
|
||||
test_batch_size_per_card: 256
|
||||
image_shape: [3, 32, 100]
|
||||
label_list: [0,180]
|
||||
eval_batch_step: 500
|
||||
train_batch_size_per_card: 512
|
||||
test_batch_size_per_card: 512
|
||||
image_shape: [3, 48, 192]
|
||||
label_list: ['0','180']
|
||||
distort: True
|
||||
reader_yml: ./configs/cls/cls_reader.yml
|
||||
pretrain_weights:
|
||||
checkpoints: /Users/zhoujun20/Desktop/code/class_model/cls_mb3_ultra_small_0.35/best_accuracy
|
||||
checkpoints:
|
||||
save_inference_dir:
|
||||
infer_img: /Users/zhoujun20/Desktop/code/PaddleOCR/doc/imgs_words/ch/word_1.jpg
|
||||
infer_img:
|
||||
|
||||
Architecture:
|
||||
function: ppocr.modeling.architectures.cls_model,ClsModel
|
||||
|
@ -23,7 +24,7 @@ Architecture:
|
|||
Backbone:
|
||||
function: ppocr.modeling.backbones.rec_mobilenet_v3,MobileNetV3
|
||||
scale: 0.35
|
||||
model_name: Ultra_small
|
||||
model_name: small
|
||||
|
||||
Head:
|
||||
function: ppocr.modeling.heads.cls_head,ClsHead
|
||||
|
@ -38,6 +39,6 @@ Optimizer:
|
|||
beta1: 0.9
|
||||
beta2: 0.999
|
||||
decay:
|
||||
function: piecewise_decay
|
||||
boundaries: [20,30]
|
||||
decay_rate: 0.1
|
||||
function: cosine_decay
|
||||
step_each_epoch: 1169
|
||||
total_epoch: 100
|
|
@ -1,13 +1,13 @@
|
|||
TrainReader:
|
||||
reader_function: ppocr.data.cls.dataset_traversal,SimpleReader
|
||||
num_workers: 1
|
||||
img_set_dir: /
|
||||
label_file_path: /Users/zhoujun20/Downloads/direction/rotate_ver/train.txt
|
||||
num_workers: 8
|
||||
img_set_dir: ./train_data/cls
|
||||
label_file_path: ./train_data/cls/train.txt
|
||||
|
||||
EvalReader:
|
||||
reader_function: ppocr.data.cls.dataset_traversal,SimpleReader
|
||||
img_set_dir: /
|
||||
label_file_path: /Users/zhoujun20/Downloads/direction/rotate_ver/train.txt
|
||||
img_set_dir: ./train_data/cls
|
||||
label_file_path: ./train_data/cls/test.txt
|
||||
|
||||
TestReader:
|
||||
reader_function: ppocr.data.cls.dataset_traversal,SimpleReader
|
||||
|
|
|
@ -57,6 +57,8 @@ public:
|
|||
|
||||
this->char_list_file.assign(config_map_["char_list_file"]);
|
||||
|
||||
this->use_angle_cls = bool(stoi(config_map_["use_angle_cls"]));
|
||||
|
||||
this->cls_model_dir.assign(config_map_["cls_model_dir"]);
|
||||
|
||||
this->cls_thresh = stod(config_map_["cls_thresh"]);
|
||||
|
@ -88,6 +90,8 @@ public:
|
|||
|
||||
std::string rec_model_dir;
|
||||
|
||||
bool use_angle_cls;
|
||||
|
||||
std::string char_list_file;
|
||||
|
||||
std::string cls_model_dir;
|
||||
|
|
|
@ -58,7 +58,7 @@ public:
|
|||
void LoadModel(const std::string &model_dir);
|
||||
|
||||
void Run(std::vector<std::vector<std::vector<int>>> boxes, cv::Mat &img,
|
||||
Classifier &cls);
|
||||
Classifier *cls);
|
||||
|
||||
private:
|
||||
std::shared_ptr<PaddlePredictor> predictor_;
|
||||
|
|
|
@ -53,10 +53,15 @@ int main(int argc, char **argv) {
|
|||
config.cpu_math_library_num_threads, config.use_mkldnn,
|
||||
config.use_zero_copy_run, config.max_side_len, config.det_db_thresh,
|
||||
config.det_db_box_thresh, config.det_db_unclip_ratio, config.visualize);
|
||||
Classifier cls(config.cls_model_dir, config.use_gpu, config.gpu_id,
|
||||
config.gpu_mem, config.cpu_math_library_num_threads,
|
||||
config.use_mkldnn, config.use_zero_copy_run,
|
||||
config.cls_thresh);
|
||||
|
||||
Classifier *cls = nullptr;
|
||||
if (config.use_angle_cls == true) {
|
||||
cls = new Classifier(config.cls_model_dir, config.use_gpu, config.gpu_id,
|
||||
config.gpu_mem, config.cpu_math_library_num_threads,
|
||||
config.use_mkldnn, config.use_zero_copy_run,
|
||||
config.cls_thresh);
|
||||
}
|
||||
|
||||
CRNNRecognizer rec(config.rec_model_dir, config.use_gpu, config.gpu_id,
|
||||
config.gpu_mem, config.cpu_math_library_num_threads,
|
||||
config.use_mkldnn, config.use_zero_copy_run,
|
||||
|
|
|
@ -17,7 +17,7 @@
|
|||
namespace PaddleOCR {
|
||||
|
||||
void CRNNRecognizer::Run(std::vector<std::vector<std::vector<int>>> boxes,
|
||||
cv::Mat &img, Classifier &cls) {
|
||||
cv::Mat &img, Classifier *cls) {
|
||||
cv::Mat srcimg;
|
||||
img.copyTo(srcimg);
|
||||
cv::Mat crop_img;
|
||||
|
@ -27,8 +27,9 @@ void CRNNRecognizer::Run(std::vector<std::vector<std::vector<int>>> boxes,
|
|||
int index = 0;
|
||||
for (int i = boxes.size() - 1; i >= 0; i--) {
|
||||
crop_img = GetRotateCropImage(srcimg, boxes[i]);
|
||||
|
||||
crop_img = cls.Run(crop_img);
|
||||
if (cls != nullptr) {
|
||||
crop_img = cls->Run(crop_img);
|
||||
}
|
||||
|
||||
float wh_ratio = float(crop_img.cols) / float(crop_img.rows);
|
||||
|
||||
|
|
|
@ -4,23 +4,23 @@ gpu_id 0
|
|||
gpu_mem 4000
|
||||
cpu_math_library_num_threads 10
|
||||
use_mkldnn 0
|
||||
use_zero_copy_run 1
|
||||
use_zero_copy_run 0
|
||||
|
||||
# det config
|
||||
max_side_len 960
|
||||
det_db_thresh 0.3
|
||||
det_db_box_thresh 0.5
|
||||
det_db_unclip_ratio 2.0
|
||||
det_model_dir ./inference/det_db
|
||||
det_model_dir ../model/det
|
||||
|
||||
# cls config
|
||||
cls_model_dir ./inference/cls
|
||||
use_angle_cls 1
|
||||
cls_model_dir ../model/cls
|
||||
cls_thresh 0.9
|
||||
|
||||
# rec config
|
||||
rec_model_dir ./inference/rec_crnn
|
||||
char_list_file ../../ppocr/utils/ppocr_keys_v1.txt
|
||||
rec_model_dir ../model/rec
|
||||
char_list_file ../model/ppocr_keys_v1.txt
|
||||
|
||||
# show the detection results
|
||||
visualize 1
|
||||
|
||||
|
|
|
@ -0,0 +1,127 @@
|
|||
## 文字角度分类
|
||||
|
||||
### 数据准备
|
||||
|
||||
请按如下步骤设置数据集:
|
||||
|
||||
训练数据的默认存储路径是 `PaddleOCR/train_data/cls`,如果您的磁盘上已有数据集,只需创建软链接至数据集目录:
|
||||
|
||||
```
|
||||
ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/cls/dataset
|
||||
```
|
||||
|
||||
请参考下文组织您的数据。
|
||||
- 训练集
|
||||
|
||||
首先请将训练图片放入同一个文件夹(train_images),并用一个txt文件(cls_gt_train.txt)记录图片路径和标签。
|
||||
|
||||
**注意:** 默认请将图片路径和图片标签用 `\t` 分割,如用其他方式分割将造成训练报错
|
||||
|
||||
0和180分别表示图片的角度为0度和180度
|
||||
|
||||
```
|
||||
" 图像文件名 图像标注信息 "
|
||||
|
||||
train_data/cls/word_001.jpg 0
|
||||
train_data/cls/word_002.jpg 180
|
||||
```
|
||||
|
||||
最终训练集应有如下文件结构:
|
||||
```
|
||||
|-train_data
|
||||
|-cls
|
||||
|- cls_gt_train.txt
|
||||
|- train
|
||||
|- word_001.png
|
||||
|- word_002.jpg
|
||||
|- word_003.jpg
|
||||
| ...
|
||||
```
|
||||
|
||||
- 测试集
|
||||
|
||||
同训练集类似,测试集也需要提供一个包含所有图片的文件夹(test)和一个cls_gt_test.txt,测试集的结构如下所示:
|
||||
|
||||
```
|
||||
|-train_data
|
||||
|-cls
|
||||
|- 和一个cls_gt_test.txt
|
||||
|- test
|
||||
|- word_001.jpg
|
||||
|- word_002.jpg
|
||||
|- word_003.jpg
|
||||
| ...
|
||||
```
|
||||
|
||||
### 启动训练
|
||||
|
||||
PaddleOCR提供了训练脚本、评估脚本和预测脚本。
|
||||
|
||||
开始训练:
|
||||
|
||||
*如果您安装的是cpu版本,请将配置文件中的 `use_gpu` 字段修改为false*
|
||||
|
||||
```
|
||||
# 设置PYTHONPATH路径
|
||||
export PYTHONPATH=$PYTHONPATH:.
|
||||
# GPU训练 支持单卡,多卡训练,通过CUDA_VISIBLE_DEVICES指定卡号
|
||||
export CUDA_VISIBLE_DEVICES=0,1,2,3
|
||||
# 启动训练
|
||||
python3 tools/train.py -c configs/cls/cls_mv3.yml
|
||||
```
|
||||
|
||||
- 数据增强
|
||||
|
||||
PaddleOCR提供了多种数据增强方式,如果您希望在训练时加入扰动,请在配置文件中设置 `distort: true`。
|
||||
|
||||
默认的扰动方式有:颜色空间转换(cvtColor)、模糊(blur)、抖动(jitter)、噪声(Gasuss noise)、随机切割(random crop)、透视(perspective)、颜色反转(reverse),随机数据增强(RandAugment)。
|
||||
|
||||
训练过程中除随机数据增强外每种扰动方式以50%的概率被选择,具体代码实现请参考:
|
||||
[randaugment.py.py](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/ppocr/data/cls/randaugment.py)
|
||||
[img_tools.py](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/ppocr/data/rec/img_tools.py)
|
||||
|
||||
*由于OpenCV的兼容性问题,扰动操作暂时只支持linux*
|
||||
|
||||
### 训练
|
||||
|
||||
PaddleOCR支持训练和评估交替进行, 可以在 `configs/cls/cls_mv3.yml` 中修改 `eval_batch_step` 设置评估频率,默认每500个iter评估一次。评估过程中默认将最佳acc模型,保存为 `output/cls_mv3/best_accuracy` 。
|
||||
|
||||
如果验证集很大,测试将会比较耗时,建议减少评估次数,或训练完再进行评估。
|
||||
|
||||
**注意,预测/评估时的配置文件请务必与训练一致。**
|
||||
|
||||
### 评估
|
||||
|
||||
评估数据集可以通过`configs/cls/cls_reader.yml` 修改EvalReader中的 `label_file_path` 设置。
|
||||
|
||||
*注意* 评估时必须确保配置文件中 infer_img 字段为空
|
||||
```
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
# GPU 评估, Global.checkpoints 为待测权重
|
||||
python3 tools/eval.py -c configs/cls/cls_mv3.yml -o Global.checkpoints={path/to/weights}/best_accuracy
|
||||
```
|
||||
|
||||
### 预测
|
||||
|
||||
* 训练引擎的预测
|
||||
|
||||
使用 PaddleOCR 训练好的模型,可以通过以下脚本进行快速预测。
|
||||
|
||||
默认预测图片存储在 `infer_img` 里,通过 `-o Global.checkpoints` 指定权重:
|
||||
|
||||
```
|
||||
# 预测分类结果
|
||||
python3 tools/infer_cls.py -c configs/cls/cls_mv3.yml -o Global.checkpoints={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
|
||||
```
|
||||
|
||||
预测图片:
|
||||
|
||||
![](../imgs_words/en/word_1.png)
|
||||
|
||||
得到输入图像的预测结果:
|
||||
|
||||
```
|
||||
infer_img: doc/imgs_words/en/word_1.png
|
||||
scores: [[0.93161047 0.06838956]]
|
||||
label: [0]
|
||||
```
|
|
@ -0,0 +1,126 @@
|
|||
## TEXT ANGLE CLASSIFICATION
|
||||
|
||||
### DATA PREPARATION
|
||||
|
||||
Please organize the dataset as follows:
|
||||
|
||||
The default storage path for training data is `PaddleOCR/train_data/cls`, if you already have a dataset on your disk, just create a soft link to the dataset directory:
|
||||
|
||||
```
|
||||
ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/cls/dataset
|
||||
```
|
||||
|
||||
please refer to the following to organize your data.
|
||||
|
||||
- Training set
|
||||
|
||||
First put the training images in the same folder (train_images), and use a txt file (cls_gt_train.txt) to store the image path and label.
|
||||
|
||||
* Note: by default, the image path and image label are split with `\t`, if you use other methods to split, it will cause training error
|
||||
|
||||
0 and 180 indicate that the angle of the image is 0 degrees and 180 degrees, respectively.
|
||||
|
||||
```
|
||||
" Image file name Image annotation "
|
||||
|
||||
train_data/word_001.jpg 0
|
||||
train_data/word_002.jpg 180
|
||||
```
|
||||
|
||||
The final training set should have the following file structure:
|
||||
|
||||
```
|
||||
|-train_data
|
||||
|-cls
|
||||
|- cls_gt_train.txt
|
||||
|- train
|
||||
|- word_001.png
|
||||
|- word_002.jpg
|
||||
|- word_003.jpg
|
||||
| ...
|
||||
```
|
||||
|
||||
- Test set
|
||||
|
||||
Similar to the training set, the test set also needs to be provided a folder
|
||||
containing all images (test) and a cls_gt_test.txt. The structure of the test set is as follows:
|
||||
|
||||
```
|
||||
|-train_data
|
||||
|-cls
|
||||
|- cls_gt_test.txt
|
||||
|- test
|
||||
|- word_001.jpg
|
||||
|- word_002.jpg
|
||||
|- word_003.jpg
|
||||
| ...
|
||||
```
|
||||
|
||||
### TRAINING
|
||||
|
||||
PaddleOCR provides training scripts, evaluation scripts, and prediction scripts.
|
||||
|
||||
Start training:
|
||||
|
||||
```
|
||||
# Set PYTHONPATH path
|
||||
export PYTHONPATH=$PYTHONPATH:.
|
||||
# GPU training Support single card and multi-card training, specify the card number through CUDA_VISIBLE_DEVICES
|
||||
export CUDA_VISIBLE_DEVICES=0,1,2,3
|
||||
# Training icdar15 English data
|
||||
python3 tools/train.py -c configs/cls/cls_mv3.yml
|
||||
```
|
||||
|
||||
- Data Augmentation
|
||||
|
||||
PaddleOCR provides a variety of data augmentation methods. If you want to add disturbance during training, please set `distort: true` in the configuration file.
|
||||
|
||||
The default perturbation methods are: cvtColor, blur, jitter, Gasuss noise, random crop, perspective, color reverse, RandAugment.
|
||||
|
||||
Except for RandAugment, each disturbance method is selected with a 50% probability during the training process. For specific code implementation, please refer to:
|
||||
[randaugment.py.py](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/ppocr/data/cls/randaugment.py)
|
||||
[img_tools.py](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/ppocr/data/rec/img_tools.py)
|
||||
|
||||
|
||||
- Training
|
||||
|
||||
PaddleOCR supports alternating training and evaluation. You can modify `eval_batch_step` in `configs/cls/cls_mv3.yml` to set the evaluation frequency. By default, it is evaluated every 500 iter and the best acc model is saved under `output/cls_mv3/best_accuracy` during the evaluation process.
|
||||
|
||||
If the evaluation set is large, the test will be time-consuming. It is recommended to reduce the number of evaluations, or evaluate after training.
|
||||
|
||||
**Note that the configuration file for prediction/evaluation must be consistent with the training.**
|
||||
|
||||
### EVALUATION
|
||||
|
||||
The evaluation data set can be modified via `configs/cls/cls_reader.yml` setting of `label_file_path` in EvalReader.
|
||||
|
||||
```
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
# GPU evaluation, Global.checkpoints is the weight to be tested
|
||||
python3 tools/eval.py -c configs/cls/cls_mv3.yml -o Global.checkpoints={path/to/weights}/best_accuracy
|
||||
```
|
||||
|
||||
### PREDICTION
|
||||
|
||||
* Training engine prediction
|
||||
|
||||
Using the model trained by paddleocr, you can quickly get prediction through the following script.
|
||||
|
||||
The default prediction picture is stored in `infer_img`, and the weight is specified via `-o Global.checkpoints`:
|
||||
|
||||
```
|
||||
# Predict English results
|
||||
python3 tools/infer_rec.py -c configs/cls/cls_mv3.yml -o Global.checkpoints={path/to/weights}/best_accuracy TestReader.infer_img=doc/imgs_words/en/word_1.jpg
|
||||
```
|
||||
|
||||
Input image:
|
||||
|
||||
![](../imgs_words/en/word_1.png)
|
||||
|
||||
Get the prediction result of the input image:
|
||||
|
||||
```
|
||||
infer_img: doc/imgs_words/en/word_1.png
|
||||
scores: [[0.93161047 0.06838956]]
|
||||
label: [0]
|
||||
```
|
|
@ -14,6 +14,7 @@
|
|||
|
||||
import os
|
||||
import sys
|
||||
import math
|
||||
import random
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
@ -23,7 +24,18 @@ from ppocr.utils.utility import get_image_file_list
|
|||
|
||||
logger = initial_logger()
|
||||
|
||||
from ppocr.data.rec.img_tools import warp, resize_norm_img
|
||||
from ppocr.data.rec.img_tools import resize_norm_img, warp
|
||||
from ppocr.data.cls.randaugment import RandAugment
|
||||
|
||||
|
||||
def random_crop(img):
|
||||
img_h, img_w = img.shape[:2]
|
||||
if img_w > img_h * 4:
|
||||
w = random.randint(img_h * 2, img_w)
|
||||
i = random.randint(0, img_w - w)
|
||||
|
||||
img = img[:, i:i + w, :]
|
||||
return img
|
||||
|
||||
|
||||
class SimpleReader(object):
|
||||
|
@ -39,7 +51,8 @@ class SimpleReader(object):
|
|||
self.image_shape = params['image_shape']
|
||||
self.mode = params['mode']
|
||||
self.infer_img = params['infer_img']
|
||||
self.use_distort = False
|
||||
self.use_distort = params['mode'] == 'train' and params['distort']
|
||||
self.randaug = RandAugment()
|
||||
self.label_list = params['label_list']
|
||||
if "distort" in params:
|
||||
self.use_distort = params['distort'] and params['use_gpu']
|
||||
|
@ -76,6 +89,7 @@ class SimpleReader(object):
|
|||
if img.shape[-1] == 1 or len(list(img.shape)) == 2:
|
||||
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
||||
norm_img = resize_norm_img(img, self.image_shape)
|
||||
|
||||
norm_img = norm_img[np.newaxis, :]
|
||||
yield norm_img
|
||||
else:
|
||||
|
@ -97,6 +111,8 @@ class SimpleReader(object):
|
|||
for img_id in range(process_id, img_num, self.num_workers):
|
||||
label_infor = label_infor_list[img_id_list[img_id]]
|
||||
substr = label_infor.decode('utf-8').strip("\n").split("\t")
|
||||
label = self.label_list.index(substr[1])
|
||||
|
||||
img_path = self.img_set_dir + "/" + substr[0]
|
||||
img = cv2.imread(img_path)
|
||||
if img is None:
|
||||
|
@ -105,12 +121,14 @@ class SimpleReader(object):
|
|||
if img.shape[-1] == 1 or len(list(img.shape)) == 2:
|
||||
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
||||
|
||||
label = substr[1]
|
||||
if self.use_distort:
|
||||
# if random.randint(1, 100)>= 50:
|
||||
# img = random_crop(img)
|
||||
img = warp(img, 10)
|
||||
img = self.randaug(img)
|
||||
norm_img = resize_norm_img(img, self.image_shape)
|
||||
norm_img = norm_img[np.newaxis, :]
|
||||
yield (norm_img, self.label_list.index(int(label)))
|
||||
yield (norm_img, label)
|
||||
|
||||
def batch_iter_reader():
|
||||
batch_outs = []
|
||||
|
|
|
@ -0,0 +1,135 @@
|
|||
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from PIL import Image, ImageEnhance, ImageOps
|
||||
import numpy as np
|
||||
import random
|
||||
import six
|
||||
|
||||
|
||||
class RawRandAugment(object):
|
||||
def __init__(self, num_layers=2, magnitude=5, fillcolor=(128, 128, 128)):
|
||||
self.num_layers = num_layers
|
||||
self.magnitude = magnitude
|
||||
self.max_level = 10
|
||||
|
||||
abso_level = self.magnitude / self.max_level
|
||||
self.level_map = {
|
||||
"shearX": 0.3 * abso_level,
|
||||
"shearY": 0.3 * abso_level,
|
||||
"translateX": 150.0 / 331 * abso_level,
|
||||
"translateY": 150.0 / 331 * abso_level,
|
||||
"rotate": 30 * abso_level,
|
||||
"color": 0.9 * abso_level,
|
||||
"posterize": int(4.0 * abso_level),
|
||||
"solarize": 256.0 * abso_level,
|
||||
"contrast": 0.9 * abso_level,
|
||||
"sharpness": 0.9 * abso_level,
|
||||
"brightness": 0.9 * abso_level,
|
||||
"autocontrast": 0,
|
||||
"equalize": 0,
|
||||
"invert": 0
|
||||
}
|
||||
|
||||
# from https://stackoverflow.com/questions/5252170/
|
||||
# specify-image-filling-color-when-rotating-in-python-with-pil-and-setting-expand
|
||||
def rotate_with_fill(img, magnitude):
|
||||
rot = img.convert("RGBA").rotate(magnitude)
|
||||
return Image.composite(rot,
|
||||
Image.new("RGBA", rot.size, (128, ) * 4),
|
||||
rot).convert(img.mode)
|
||||
|
||||
rnd_ch_op = random.choice
|
||||
|
||||
self.func = {
|
||||
"shearX": lambda img, magnitude: img.transform(
|
||||
img.size,
|
||||
Image.AFFINE,
|
||||
(1, magnitude * rnd_ch_op([-1, 1]), 0, 0, 1, 0),
|
||||
Image.BICUBIC,
|
||||
fillcolor=fillcolor),
|
||||
"shearY": lambda img, magnitude: img.transform(
|
||||
img.size,
|
||||
Image.AFFINE,
|
||||
(1, 0, 0, magnitude * rnd_ch_op([-1, 1]), 1, 0),
|
||||
Image.BICUBIC,
|
||||
fillcolor=fillcolor),
|
||||
"translateX": lambda img, magnitude: img.transform(
|
||||
img.size,
|
||||
Image.AFFINE,
|
||||
(1, 0, magnitude * img.size[0] * rnd_ch_op([-1, 1]), 0, 1, 0),
|
||||
fillcolor=fillcolor),
|
||||
"translateY": lambda img, magnitude: img.transform(
|
||||
img.size,
|
||||
Image.AFFINE,
|
||||
(1, 0, 0, 0, 1, magnitude * img.size[1] * rnd_ch_op([-1, 1])),
|
||||
fillcolor=fillcolor),
|
||||
"rotate": lambda img, magnitude: rotate_with_fill(img, magnitude),
|
||||
"color": lambda img, magnitude: ImageEnhance.Color(img).enhance(
|
||||
1 + magnitude * rnd_ch_op([-1, 1])),
|
||||
"posterize": lambda img, magnitude:
|
||||
ImageOps.posterize(img, magnitude),
|
||||
"solarize": lambda img, magnitude:
|
||||
ImageOps.solarize(img, magnitude),
|
||||
"contrast": lambda img, magnitude:
|
||||
ImageEnhance.Contrast(img).enhance(
|
||||
1 + magnitude * rnd_ch_op([-1, 1])),
|
||||
"sharpness": lambda img, magnitude:
|
||||
ImageEnhance.Sharpness(img).enhance(
|
||||
1 + magnitude * rnd_ch_op([-1, 1])),
|
||||
"brightness": lambda img, magnitude:
|
||||
ImageEnhance.Brightness(img).enhance(
|
||||
1 + magnitude * rnd_ch_op([-1, 1])),
|
||||
"autocontrast": lambda img, magnitude:
|
||||
ImageOps.autocontrast(img),
|
||||
"equalize": lambda img, magnitude: ImageOps.equalize(img),
|
||||
"invert": lambda img, magnitude: ImageOps.invert(img)
|
||||
}
|
||||
|
||||
def __call__(self, img):
|
||||
avaiable_op_names = list(self.level_map.keys())
|
||||
for layer_num in range(self.num_layers):
|
||||
op_name = np.random.choice(avaiable_op_names)
|
||||
img = self.func[op_name](img, self.level_map[op_name])
|
||||
return img
|
||||
|
||||
|
||||
class RandAugment(RawRandAugment):
|
||||
""" RandAugment wrapper to auto fit different img types """
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
if six.PY2:
|
||||
super(RandAugment, self).__init__(*args, **kwargs)
|
||||
else:
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def __call__(self, img):
|
||||
if not isinstance(img, Image.Image):
|
||||
img = np.ascontiguousarray(img)
|
||||
img = Image.fromarray(img)
|
||||
|
||||
if six.PY2:
|
||||
img = super(RandAugment, self).__call__(img)
|
||||
else:
|
||||
img = super().__call__(img)
|
||||
|
||||
if isinstance(img, Image.Image):
|
||||
img = np.asarray(img)
|
||||
|
||||
return img
|
|
@ -16,12 +16,9 @@ from __future__ import absolute_import
|
|||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import logging
|
||||
import numpy as np
|
||||
|
||||
import paddle.fluid as fluid
|
||||
|
||||
__all__ = ['eval_class_run']
|
||||
__all__ = ['eval_cls_run']
|
||||
|
||||
import logging
|
||||
|
||||
|
@ -52,7 +49,8 @@ def eval_cls_run(exe, eval_info_dict):
|
|||
fetch_list=eval_info_dict['fetch_varname_list'], \
|
||||
return_numpy=False)
|
||||
softmax_outs = np.array(outs[1])
|
||||
|
||||
if len(softmax_outs.shape) != 1:
|
||||
softmax_outs = np.array(outs[0])
|
||||
acc, acc_num = cal_cls_acc(softmax_outs, label_list)
|
||||
total_acc_num += acc_num
|
||||
total_sample_num += len(label_list)
|
||||
|
|
|
@ -108,7 +108,7 @@ class TextClassifier(object):
|
|||
score = prob_out[rno][label_idx]
|
||||
label = self.label_list[label_idx]
|
||||
cls_res[indices[beg_img_no + rno]] = [label, score]
|
||||
if label == 180:
|
||||
if '180' in label and score > 0.9999:
|
||||
img_list[indices[beg_img_no + rno]] = cv2.rotate(
|
||||
img_list[indices[beg_img_no + rno]], 1)
|
||||
return img_list, cls_res, predict_time
|
||||
|
@ -130,12 +130,6 @@ def main(args):
|
|||
img_list.append(img)
|
||||
try:
|
||||
img_list, cls_res, predict_time = text_classifier(img_list)
|
||||
print(cls_res)
|
||||
from matplotlib import pyplot as plt
|
||||
for img, angle in zip(img_list, cls_res):
|
||||
plt.title(str(angle))
|
||||
plt.imshow(img)
|
||||
plt.show()
|
||||
except Exception as e:
|
||||
print(e)
|
||||
exit()
|
||||
|
|
|
@ -40,7 +40,9 @@ class TextSystem(object):
|
|||
def __init__(self, args):
|
||||
self.text_detector = predict_det.TextDetector(args)
|
||||
self.text_recognizer = predict_rec.TextRecognizer(args)
|
||||
self.text_classifier = predict_cls.TextClassifier(args)
|
||||
self.use_angle_cls = args.use_angle_cls
|
||||
if self.use_angle_cls:
|
||||
self.text_classifier = predict_cls.TextClassifier(args)
|
||||
|
||||
def get_rotate_crop_image(self, img, points):
|
||||
'''
|
||||
|
@ -95,10 +97,12 @@ class TextSystem(object):
|
|||
tmp_box = copy.deepcopy(dt_boxes[bno])
|
||||
img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
|
||||
img_crop_list.append(img_crop)
|
||||
img_rotate_list, angle_list, elapse = self.text_classifier(
|
||||
img_crop_list)
|
||||
print("cls num : {}, elapse : {}".format(len(img_rotate_list), elapse))
|
||||
rec_res, elapse = self.text_recognizer(img_rotate_list)
|
||||
if self.use_angle_cls:
|
||||
img_crop_list, angle_list, elapse = self.text_classifier(
|
||||
img_crop_list)
|
||||
print("cls num : {}, elapse : {}".format(
|
||||
len(img_crop_list), elapse))
|
||||
rec_res, elapse = self.text_recognizer(img_crop_list)
|
||||
print("rec_res num : {}, elapse : {}".format(len(rec_res), elapse))
|
||||
# self.print_draw_crop_rec_res(img_crop_list, rec_res)
|
||||
return dt_boxes, rec_res
|
||||
|
|
|
@ -15,6 +15,7 @@
|
|||
import argparse
|
||||
import os, sys
|
||||
from ppocr.utils.utility import initial_logger
|
||||
|
||||
logger = initial_logger()
|
||||
from paddle.fluid.core import PaddleTensor
|
||||
from paddle.fluid.core import AnalysisConfig
|
||||
|
@ -31,34 +32,34 @@ def parse_args():
|
|||
return v.lower() in ("true", "t", "1")
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
#params for prediction engine
|
||||
# params for prediction engine
|
||||
parser.add_argument("--use_gpu", type=str2bool, default=True)
|
||||
parser.add_argument("--ir_optim", type=str2bool, default=True)
|
||||
parser.add_argument("--use_tensorrt", type=str2bool, default=False)
|
||||
parser.add_argument("--gpu_mem", type=int, default=8000)
|
||||
|
||||
#params for text detector
|
||||
# params for text detector
|
||||
parser.add_argument("--image_dir", type=str)
|
||||
parser.add_argument("--det_algorithm", type=str, default='DB')
|
||||
parser.add_argument("--det_model_dir", type=str)
|
||||
parser.add_argument("--det_max_side_len", type=float, default=960)
|
||||
|
||||
#DB parmas
|
||||
# DB parmas
|
||||
parser.add_argument("--det_db_thresh", type=float, default=0.3)
|
||||
parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
|
||||
parser.add_argument("--det_db_unclip_ratio", type=float, default=2.0)
|
||||
|
||||
#EAST parmas
|
||||
# EAST parmas
|
||||
parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
|
||||
parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
|
||||
parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)
|
||||
|
||||
#SAST parmas
|
||||
# SAST parmas
|
||||
parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
|
||||
parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
|
||||
parser.add_argument("--det_sast_polygon", type=bool, default=False)
|
||||
|
||||
#params for text recognizer
|
||||
# params for text recognizer
|
||||
parser.add_argument("--rec_algorithm", type=str, default='CRNN')
|
||||
parser.add_argument("--rec_model_dir", type=str)
|
||||
parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
|
||||
|
@ -72,13 +73,14 @@ def parse_args():
|
|||
parser.add_argument("--use_space_char", type=bool, default=True)
|
||||
|
||||
# params for text classifier
|
||||
parser.add_argument("--use_angle_cls", type=str2bool, default=True)
|
||||
parser.add_argument("--cls_model_dir", type=str)
|
||||
parser.add_argument("--cls_image_shape", type=str, default="3, 32, 100")
|
||||
parser.add_argument("--label_list", type=list, default=[0, 180])
|
||||
parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
|
||||
parser.add_argument("--label_list", type=list, default=['0', '180'])
|
||||
parser.add_argument("--cls_batch_num", type=int, default=30)
|
||||
|
||||
parser.add_argument("--enable_mkldnn", type=bool, default=False)
|
||||
parser.add_argument("--use_zero_copy_run", type=bool, default=False)
|
||||
parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
|
||||
parser.add_argument("--use_zero_copy_run", type=str2bool, default=False)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
|
@ -112,7 +114,7 @@ def create_predictor(args, mode):
|
|||
if args.enable_mkldnn:
|
||||
config.enable_mkldnn()
|
||||
|
||||
#config.enable_memory_optim()
|
||||
# config.enable_memory_optim()
|
||||
config.disable_glog_info()
|
||||
|
||||
if args.use_zero_copy_run:
|
||||
|
|
|
@ -85,9 +85,10 @@ def main():
|
|||
feed={"image": img},
|
||||
fetch_list=fetch_varname_list,
|
||||
return_numpy=False)
|
||||
for k in predict:
|
||||
k = np.array(k)
|
||||
print(k)
|
||||
scores = np.array(predict[0])
|
||||
label = np.array(predict[1])
|
||||
logger.info('\t scores: {}'.format(scores))
|
||||
logger.info('\t label: {}'.format(label))
|
||||
# save for inference model
|
||||
target_var = []
|
||||
for key, values in outputs.items():
|
||||
|
|
Loading…
Reference in New Issue