add en layout doc
This commit is contained in:
parent
9fd1e9d630
commit
1685115da8
Binary file not shown.
Before Width: | Height: | Size: 55 KiB |
|
@ -80,7 +80,7 @@ In PaddleStructure, the image will be analyzed by layoutparser first. In the lay
|
|||
|
||||
### 2.1 LayoutParser
|
||||
|
||||
Layout analysis divides the document data into regions, including the use of Python scripts for layout analysis tools, extraction of special category detection boxes, performance indicators, and custom training layout analysis models. For details, please refer to [document](layout/README.md).
|
||||
Layout analysis divides the document data into regions, including the use of Python scripts for layout analysis tools, extraction of special category detection boxes, performance indicators, and custom training layout analysis models. For details, please refer to [document](layout/README_en.md).
|
||||
|
||||
### 2.2 Table OCR
|
||||
|
||||
|
|
|
@ -1,10 +1,14 @@
|
|||
# 版面分析使用说明
|
||||
|
||||
* [1. 安装whl包](#安装whl包)
|
||||
* [2. 使用](#使用)
|
||||
* [3. 后处理](#后处理)
|
||||
* [4. 指标](#指标)
|
||||
* [5. 训练版面分析模型](#训练版面分析模型)
|
||||
[1. 安装whl包](#安装whl包)
|
||||
|
||||
[2. 使用](#使用)
|
||||
|
||||
[3. 后处理](#后处理)
|
||||
|
||||
[4. 指标](#指标)
|
||||
|
||||
[5. 训练版面分析模型](#训练版面分析模型)
|
||||
|
||||
<a name="安装whl包"></a>
|
||||
|
||||
|
|
|
@ -0,0 +1,135 @@
|
|||
# Getting Started
|
||||
|
||||
[1. Install whl package](#Install whl package)
|
||||
|
||||
[2. Quick Start](#Quick Start)
|
||||
|
||||
[3. PostProcess](#PostProcess)
|
||||
|
||||
[4. Results](#Results)
|
||||
|
||||
[5. Training](#Training)
|
||||
|
||||
<a name="Install whl package"></a>
|
||||
|
||||
## 1. Install whl package
|
||||
```bash
|
||||
wget https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
|
||||
pip install -U layoutparser-0.0.0-py3-none-any.whl
|
||||
```
|
||||
|
||||
<a name="Quick Start"></a>
|
||||
|
||||
## 2. Quick Start
|
||||
|
||||
Use LayoutParser to identify the layout of a given document:
|
||||
|
||||
```python
|
||||
import layoutparser as lp
|
||||
image = cv2.imread("imags/paper-image.jpg")
|
||||
image = image[..., ::-1]
|
||||
|
||||
# load model
|
||||
model = lp.PaddleDetectionLayoutModel(config_path="lp://PubLayNet/ppyolov2_r50vd_dcn_365e_publaynet/config",
|
||||
threshold=0.5,
|
||||
label_map={0: "Text", 1: "Title", 2: "List", 3:"Table", 4:"Figure"},
|
||||
enforce_cpu=False,
|
||||
enable_mkldnn=True)
|
||||
# detect
|
||||
layout = model.detect(image)
|
||||
|
||||
# show result
|
||||
lp.draw_box(image, layout, box_width=3, show_element_type=True)
|
||||
```
|
||||
|
||||
The following figure shows the result, with different colored detection boxes representing different categories and displaying specific categories in the upper left corner of the box with `show_element_type`
|
||||
|
||||
<div align="center">
|
||||
<img src="../../doc/table/result_all.jpg" width = "600" />
|
||||
</div>
|
||||
`PaddleDetectionLayoutModel`parameters are described as follows:
|
||||
|
||||
| parameter | description | default | remark |
|
||||
| :------------: | :------------------------------------------------------: | :---------: | :----------------------------------------------------------: |
|
||||
| config_path | model config path | None | Specify config_ path will automatically download the model (only for the first time,the model will exist and will not be downloaded again) |
|
||||
| model_path | model path | None | local model path, config_ path and model_ path must be set to one, cannot be none at the same time |
|
||||
| threshold | threshold of prediction score | 0.5 | \ |
|
||||
| input_shape | picture size of reshape | [3,640,640] | \ |
|
||||
| batch_size | testing batch size | 1 | \ |
|
||||
| label_map | category mapping table | None | Setting config_ path, it can be none, and the label is automatically obtained according to the dataset name_ map |
|
||||
| enforce_cpu | whether to use CPU | False | False to use GPU, and True to force the use of CPU |
|
||||
| enforce_mkldnn | whether mkldnn acceleration is enabled in CPU prediction | True | \ |
|
||||
| thread_num | the number of CPU threads | 10 | \ |
|
||||
|
||||
The following model configurations and label maps are currently supported, which you can use by modifying '--config_path' and '--label_map' to detect different types of content:
|
||||
|
||||
| dataset | config_path | label_map |
|
||||
| ------------------------------------------------------------ | ------------------------------------------------------------ | --------------------------------------------------------- |
|
||||
| [TableBank](https://doc-analysis.github.io/tablebank-page/index.html) word | lp://TableBank/ppyolov2_r50vd_dcn_365e_tableBank_word/config | {0:"Table"} |
|
||||
| TableBank latex | lp://TableBank/ppyolov2_r50vd_dcn_365e_tableBank_latex/config | {0:"Table"} |
|
||||
| [PubLayNet](https://github.com/ibm-aur-nlp/PubLayNet) | lp://PubLayNet/ppyolov2_r50vd_dcn_365e_publaynet/config | {0: "Text", 1: "Title", 2: "List", 3:"Table", 4:"Figure"} |
|
||||
|
||||
* TableBank word and TableBank latex are trained on datasets of word documents and latex documents respectively;
|
||||
* Download TableBank dataset contains both word and latex。
|
||||
|
||||
<a name="PostProcess"></a>
|
||||
|
||||
## 3. PostProcess
|
||||
|
||||
Layout parser contains multiple categories, if you only want to get the detection box for a specific category (such as the "Text" category), you can use the following code:
|
||||
|
||||
```python
|
||||
# filter areas for a specific text type
|
||||
text_blocks = lp.Layout([b for b in layout if b.type=='Text'])
|
||||
figure_blocks = lp.Layout([b for b in layout if b.type=='Figure'])
|
||||
|
||||
# text areas may be detected within the image area, delete these areas
|
||||
text_blocks = lp.Layout([b for b in text_blocks \
|
||||
if not any(b.is_in(b_fig) for b_fig in figure_blocks)])
|
||||
|
||||
# sort text areas and assign ID
|
||||
h, w = image.shape[:2]
|
||||
|
||||
left_interval = lp.Interval(0, w/2*1.05, axis='x').put_on_canvas(image)
|
||||
|
||||
left_blocks = text_blocks.filter_by(left_interval, center=True)
|
||||
left_blocks.sort(key = lambda b:b.coordinates[1])
|
||||
|
||||
right_blocks = [b for b in text_blocks if b not in left_blocks]
|
||||
right_blocks.sort(key = lambda b:b.coordinates[1])
|
||||
|
||||
# the two lists are merged and the indexes are added in order
|
||||
text_blocks = lp.Layout([b.set(id = idx) for idx, b in enumerate(left_blocks + right_blocks)])
|
||||
|
||||
# display result
|
||||
lp.draw_box(image, text_blocks,
|
||||
box_width=3,
|
||||
show_element_id=True)
|
||||
```
|
||||
|
||||
Displays results with only the "Text" category:
|
||||
|
||||
<div align="center">
|
||||
<img src="../../doc/table/result_text.jpg" width = "600" />
|
||||
</div>
|
||||
<a name="Results"></a>
|
||||
|
||||
## 4. Results
|
||||
|
||||
| Dataset | mAP | CPU time cost | GPU time cost |
|
||||
| --------- | ---- | ------------- | ------------- |
|
||||
| PubLayNet | 93.6 | 1713.7ms | 66.6ms |
|
||||
| TableBank | 96.2 | 1968.4ms | 65.1ms |
|
||||
|
||||
**Envrionment:**
|
||||
|
||||
**CPU:** Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz,24core
|
||||
|
||||
**GPU:** a single NVIDIA Tesla P40
|
||||
|
||||
<a name="Training"></a>
|
||||
|
||||
## 5. Training
|
||||
|
||||
The above model is based on PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection) ,if you want to train your own layout parser model,please refer to:[train_layoutparser_model](train_layoutparser_model_en.md)
|
||||
|
|
@ -1,15 +1,24 @@
|
|||
# 训练版面分析
|
||||
|
||||
* [1. 安装](#安装)
|
||||
* [1.1 环境要求](#环境要求)
|
||||
* [1.2 安装PaddleDetection](#安装PaddleDetection)
|
||||
* [2. 准备数据](#准备数据)
|
||||
* [3. 配置文件改动和说明](#配置文件改动和说明)
|
||||
* [4. PaddleDetection训练](#训练)
|
||||
* [5. PaddleDetection预测](#预测)
|
||||
* [6. 预测部署](#预测部署)
|
||||
* [6.1 模型导出](#模型导出)
|
||||
* [6.2 layout parser预测](#layout_parser预测)
|
||||
[1. 安装](#安装)
|
||||
|
||||
[1.1 环境要求](#环境要求)
|
||||
|
||||
[1.2 安装PaddleDetection](#安装PaddleDetection)
|
||||
|
||||
[2. 准备数据](#准备数据)
|
||||
|
||||
[3. 配置文件改动和说明](#配置文件改动和说明)
|
||||
|
||||
[4. PaddleDetection训练](#训练)
|
||||
|
||||
[5. PaddleDetection预测](#预测)
|
||||
|
||||
[6. 预测部署](#预测部署)
|
||||
|
||||
[6.1 模型导出](#模型导出)
|
||||
|
||||
[6.2 layout parser预测](#layout_parser预测)
|
||||
|
||||
<a name="安装"></a>
|
||||
|
||||
|
@ -64,10 +73,10 @@ tar -xvf publaynet.tar.gz
|
|||
| `train/` | Images in the training subset | 335,703 |
|
||||
| `val/` | Images in the validation subset | 11,245 |
|
||||
| `test/` | Images in the testing subset | 11,405 |
|
||||
| `train.json` | Annotations for training images | |
|
||||
| `val.json` | Annotations for validation images | |
|
||||
| `LICENSE.txt` | Plaintext version of the CDLA-Permissive license | |
|
||||
| `README.txt` | Text file with the file names and description | |
|
||||
| `train.json` | Annotations for training images | 1 |
|
||||
| `val.json` | Annotations for validation images | 1 |
|
||||
| `LICENSE.txt` | Plaintext version of the CDLA-Permissive license | 1 |
|
||||
| `README.txt` | Text file with the file names and description | 1 |
|
||||
|
||||
如果使用其它数据集,请参考[准备训练数据](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/docs/tutorials/PrepareDataSet.md)
|
||||
|
||||
|
@ -77,23 +86,30 @@ tar -xvf publaynet.tar.gz
|
|||
|
||||
我们使用 `configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml`配置进行训练,配置文件摘要如下:
|
||||
|
||||
<div align='center'>
|
||||
<img src='../../doc/table/PaddleDetection_config.png' width='600px'/>
|
||||
</div>
|
||||
|
||||
从上图看到 `ppyolov2_r50vd_dcn_365e_coco.yml` 配置需要依赖其他的配置文件,在该例子中需要依赖:
|
||||
```bash
|
||||
_BASE_: [
|
||||
'../datasets/coco_detection.yml',
|
||||
'../runtime.yml',
|
||||
'./_base_/ppyolov2_r50vd_dcn.yml',
|
||||
'./_base_/optimizer_365e.yml',
|
||||
'./_base_/ppyolov2_reader.yml',
|
||||
]
|
||||
|
||||
snapshot_epoch: 8
|
||||
weights: output/ppyolov2_r50vd_dcn_365e_coco/model_final
|
||||
```
|
||||
coco_detection.yml:主要说明了训练数据和验证数据的路径
|
||||
从中可以看到 `ppyolov2_r50vd_dcn_365e_coco.yml` 配置需要依赖其他的配置文件,在该例子中需要依赖:
|
||||
|
||||
runtime.yml:主要说明了公共的运行参数,比如是否使用GPU、每多少个epoch存储checkpoint等
|
||||
- coco_detection.yml:主要说明了训练数据和验证数据的路径
|
||||
|
||||
optimizer_365e.yml:主要说明了学习率和优化器的配置
|
||||
- runtime.yml:主要说明了公共的运行参数,比如是否使用GPU、每多少个epoch存储checkpoint等
|
||||
|
||||
ppyolov2_r50vd_dcn.yml:主要说明模型和主干网络的情况
|
||||
- optimizer_365e.yml:主要说明了学习率和优化器的配置
|
||||
|
||||
- ppyolov2_r50vd_dcn.yml:主要说明模型和主干网络的情况
|
||||
|
||||
- ppyolov2_reader.yml:主要说明数据读取器配置,如batch size,并发加载子进程数等,同时包含读取后预处理操作,如resize、数据增强等等
|
||||
|
||||
ppyolov2_reader.yml:主要说明数据读取器配置,如batch size,并发加载子进程数等,同时包含读取后预处理操作,如resize、数据增强等等
|
||||
```
|
||||
|
||||
根据实际情况,修改上述文件,比如数据集路径、batch size等。
|
||||
|
||||
|
@ -147,7 +163,7 @@ python tools/infer.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml --infer
|
|||
|
||||
## 6. 预测部署
|
||||
|
||||
在layout parser中使用自己训练好的模型,
|
||||
在layout parser中使用自己训练好的模型。
|
||||
|
||||
<a name="模型导出"></a>
|
||||
|
||||
|
|
|
@ -0,0 +1,204 @@
|
|||
# Training layout-parse
|
||||
|
||||
[1. Installation](#Installation)
|
||||
|
||||
[1.1 Requirements](#Requirements)
|
||||
|
||||
[1.2 Install PaddleDetection](#Install PaddleDetection)
|
||||
|
||||
[2. Data preparation](#Data preparation)
|
||||
|
||||
[3. Configuration](#Configuration)
|
||||
|
||||
[4. Training](#Training)
|
||||
|
||||
[5. Prediction](#Prediction)
|
||||
|
||||
[6. Deployment](#Deployment)
|
||||
|
||||
[6.1 Export model](#Export model)
|
||||
|
||||
[6.2 Inference](#Inference)
|
||||
|
||||
<a name="Installation"></a>
|
||||
|
||||
## 1. Installation
|
||||
|
||||
<a name="Requirements"></a>
|
||||
|
||||
### 1.1 Requirements
|
||||
|
||||
- PaddlePaddle 2.1
|
||||
- OS 64 bit
|
||||
- Python 3(3.5.1+/3.6/3.7/3.8/3.9),64 bit
|
||||
- pip/pip3(9.0.1+), 64 bit
|
||||
- CUDA >= 10.1
|
||||
- cuDNN >= 7.6
|
||||
|
||||
<a name="Install PaddleDetection"></a>
|
||||
|
||||
### 1.2 Install PaddleDetection
|
||||
|
||||
```bash
|
||||
# Clone PaddleDetection repository
|
||||
cd <path/to/clone/PaddleDetection>
|
||||
git clone https://github.com/PaddlePaddle/PaddleDetection.git
|
||||
|
||||
cd PaddleDetection
|
||||
# Install other dependencies
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
For more installation tutorials, please refer to: [Install doc](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/docs/tutorials/INSTALL_cn.md)
|
||||
|
||||
<a name="Data preparation"></a>
|
||||
|
||||
## 2. Data preparation
|
||||
|
||||
Download the [PubLayNet](https://github.com/ibm-aur-nlp/PubLayNet) dataset
|
||||
|
||||
```bash
|
||||
cd PaddleDetection/dataset/
|
||||
mkdir publaynet
|
||||
# execute the command,download PubLayNet
|
||||
wget -O publaynet.tar.gz https://dax-cdn.cdn.appdomain.cloud/dax-publaynet/1.0.0/publaynet.tar.gz?_ga=2.104193024.1076900768.1622560733-649911202.1622560733
|
||||
# unpack
|
||||
tar -xvf publaynet.tar.gz
|
||||
```
|
||||
|
||||
PubLayNet directory structure after decompressing :
|
||||
|
||||
| File or Folder | Description | num |
|
||||
| :------------- | :----------------------------------------------- | ------- |
|
||||
| `train/` | Images in the training subset | 335,703 |
|
||||
| `val/` | Images in the validation subset | 11,245 |
|
||||
| `test/` | Images in the testing subset | 11,405 |
|
||||
| `train.json` | Annotations for training images | 1 |
|
||||
| `val.json` | Annotations for validation images | 1 |
|
||||
| `LICENSE.txt` | Plaintext version of the CDLA-Permissive license | 1 |
|
||||
| `README.txt` | Text file with the file names and description | 1 |
|
||||
|
||||
For other datasets,please refer to [the PrepareDataSet]((https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/docs/tutorials/PrepareDataSet.md) )
|
||||
|
||||
<a name="Configuration"></a>
|
||||
|
||||
## 3. Configuration
|
||||
|
||||
We use the `configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml` configuration for training,the configuration file is as follows
|
||||
|
||||
```bash
|
||||
_BASE_: [
|
||||
'../datasets/coco_detection.yml',
|
||||
'../runtime.yml',
|
||||
'./_base_/ppyolov2_r50vd_dcn.yml',
|
||||
'./_base_/optimizer_365e.yml',
|
||||
'./_base_/ppyolov2_reader.yml',
|
||||
]
|
||||
|
||||
snapshot_epoch: 8
|
||||
weights: output/ppyolov2_r50vd_dcn_365e_coco/model_final
|
||||
```
|
||||
The `ppyolov2_r50vd_dcn_365e_coco.yml` configuration depends on other configuration files, in this case:
|
||||
|
||||
- coco_detection.yml:mainly explains the path of training data and verification data
|
||||
|
||||
- runtime.yml:mainly describes the common parameters, such as whether to use the GPU and how many epoch to save model etc.
|
||||
|
||||
- optimizer_365e.yml:mainly explains the learning rate and optimizer configuration
|
||||
|
||||
- ppyolov2_r50vd_dcn.yml:mainly describes the model and the network
|
||||
|
||||
- ppyolov2_reader.yml:mainly describes the configuration of data readers, such as batch size and number of concurrent loading child processes, and also includes post preprocessing, such as resize and data augmention etc.
|
||||
|
||||
|
||||
Modify the preceding files, such as the dataset path and batch size etc.
|
||||
|
||||
<a name="Training"></a>
|
||||
|
||||
## 4. Training
|
||||
|
||||
PaddleDetection provides single-card/multi-card training mode to meet various training needs of users:
|
||||
|
||||
* GPU single card training
|
||||
|
||||
```bash
|
||||
export CUDA_VISIBLE_DEVICES=0 #Don't need to run this command on Windows and Mac
|
||||
python tools/train.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml
|
||||
```
|
||||
|
||||
* GPU multi-card training
|
||||
|
||||
```bash
|
||||
export CUDA_VISIBLE_DEVICES=0,1,2,3
|
||||
python -m paddle.distributed.launch --gpus 0,1,2,3 tools/train.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml --eval
|
||||
```
|
||||
|
||||
--eval: training while verifying
|
||||
|
||||
* Model recovery training
|
||||
|
||||
During the daily training, if training is interrupted due to some reasons, you can use the -r command to resume the training:
|
||||
|
||||
```bash
|
||||
export CUDA_VISIBLE_DEVICES=0,1,2,3
|
||||
python -m paddle.distributed.launch --gpus 0,1,2,3 tools/train.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml --eval -r output/ppyolov2_r50vd_dcn_365e_coco/10000
|
||||
```
|
||||
|
||||
Note: If you encounter "`Out of memory error`" , try reducing `batch_size` in the `ppyolov2_reader.yml` file
|
||||
|
||||
prediction<a name="Prediction"></a>
|
||||
|
||||
## 5. Prediction
|
||||
|
||||
Set parameters and use PaddleDetection to predict:
|
||||
|
||||
```bash
|
||||
export CUDA_VISIBLE_DEVICES=0
|
||||
python tools/infer.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml --infer_img=images/paper-image.jpg --output_dir=infer_output/ --draw_threshold=0.5 -o weights=output/ppyolov2_r50vd_dcn_365e_coco/model_final --use_vdl=Ture
|
||||
```
|
||||
|
||||
`--draw_threshold` is an optional parameter. According to the calculation of [NMS](https://ieeexplore.ieee.org/document/1699659), different threshold will produce different results, ` keep_top_k ` represent the maximum amount of output target, the default value is 10. You can set different value according to your own actual situation。
|
||||
|
||||
<a name="Deployment"></a>
|
||||
|
||||
## 6. Deployment
|
||||
|
||||
Use your trained model in Layout Parser
|
||||
|
||||
<a name="Export model"></a>
|
||||
|
||||
### 6.1 Export model
|
||||
|
||||
n the process of model training, the model file saved contains the process of forward prediction and back propagation. In the actual industrial deployment, there is no need for back propagation. Therefore, the model should be translated into the model format required by the deployment. The `tools/export_model.py` script is provided in PaddleDetection to export the model.
|
||||
|
||||
The exported model name defaults to `model.*`, Layout Parser's code model is `inference.*`, So change [PaddleDetection/ppdet/engine/trainer. Py ](https://github.com/PaddlePaddle/PaddleDetection/blob/b87a1ea86fa18ce69e44a17ad1b49c1326f19ff9/ppdet/engine/trainer.py# L512) (click on the link to see the detailed line of code), change 'model' to 'inference'.
|
||||
|
||||
Execute the script to export model:
|
||||
|
||||
```bash
|
||||
python tools/export_model.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml --output_dir=./inference -o weights=output/ppyolov2_r50vd_dcn_365e_coco/model_final.pdparams
|
||||
```
|
||||
|
||||
The prediction model is exported to `inference/ppyolov2_r50vd_dcn_365e_coco` ,including:`infer_cfg.yml`(prediction not required), `inference.pdiparams`, `inference.pdiparams.info`,`inference.pdmodel`
|
||||
|
||||
More model export tutorials, please refer to:[EXPORT_MODEL](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/deploy/EXPORT_MODEL.md)
|
||||
|
||||
<a name="Inference"></a>
|
||||
|
||||
### 6.2 Inference
|
||||
|
||||
`model_path` represent the trained model path, and layoutparser is used to predict:
|
||||
|
||||
```bash
|
||||
import layoutparser as lp
|
||||
model = lp.PaddleDetectionLayoutModel(model_path="inference/ppyolov2_r50vd_dcn_365e_coco", threshold=0.5,label_map={0: "Text", 1: "Title", 2: "List", 3:"Table", 4:"Figure"},enforce_cpu=True,enable_mkldnn=True)
|
||||
```
|
||||
|
||||
|
||||
|
||||
***
|
||||
|
||||
More PaddleDetection training tutorials,please reference:[PaddleDetection Training](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/docs/tutorials/GETTING_STARTED_cn.md)
|
||||
|
||||
***
|
||||
|
Loading…
Reference in New Issue