commit
177d8fd9a5
|
@ -92,6 +92,7 @@ python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_mode
|
|||
- [文本检测模型训练/评估/预测](./doc/doc_ch/detection.md)
|
||||
- [文本识别模型训练/评估/预测](./doc/doc_ch/recognition.md)
|
||||
- [基于预测引擎推理](./doc/doc_ch/inference.md)
|
||||
- [yml配置文件参数介绍](./doc/doc_ch/config_ch.md)
|
||||
- [数据集](./doc/doc_ch/datasets.md)
|
||||
- [FAQ](#FAQ)
|
||||
- [联系我们](#欢迎加入PaddleOCR技术交流群)
|
||||
|
|
|
@ -92,7 +92,9 @@ For more text detection and recognition models, please refer to the document [In
|
|||
- [Text detection model training/evaluation/prediction](./doc/doc_en/detection_en.md)
|
||||
- [Text recognition model training/evaluation/prediction](./doc/doc_en/recognition_en.md)
|
||||
- [Inference](./doc/doc_en/inference_en.md)
|
||||
- [Introduction of yml file](./doc/doc_en/config_en.md)
|
||||
- [Dataset](./doc/doc_en/datasets_en.md)
|
||||
- [FAQ]((#FAQ)
|
||||
|
||||
## TEXT DETECTION ALGORITHM
|
||||
|
||||
|
@ -170,6 +172,7 @@ Please refer to the document for training guide and use of PaddleOCR text recogn
|
|||
![](doc/imgs_results/chinese_db_crnn_server/2.jpg)
|
||||
![](doc/imgs_results/chinese_db_crnn_server/8.jpg)
|
||||
|
||||
<a name="FAQ"></a>
|
||||
## FAQ
|
||||
1. Error when using attention-based recognition model: KeyError: 'predict'
|
||||
|
||||
|
|
|
@ -6,7 +6,8 @@ Global:
|
|||
print_batch_step: 2
|
||||
save_model_dir: ./output/det_db/
|
||||
save_epoch_step: 200
|
||||
eval_batch_step: 5000
|
||||
# evaluation is run every 5000 iterations after the 4000th iteration
|
||||
eval_batch_step: [4000, 5000]
|
||||
train_batch_size_per_card: 16
|
||||
test_batch_size_per_card: 16
|
||||
image_shape: [3, 640, 640]
|
||||
|
@ -50,4 +51,4 @@ PostProcess:
|
|||
thresh: 0.3
|
||||
box_thresh: 0.7
|
||||
max_candidates: 1000
|
||||
unclip_ratio: 2.0
|
||||
unclip_ratio: 2.0
|
||||
|
|
|
@ -6,7 +6,7 @@ Global:
|
|||
print_batch_step: 5
|
||||
save_model_dir: ./output/det_east/
|
||||
save_epoch_step: 200
|
||||
eval_batch_step: 5000
|
||||
eval_batch_step: [5000, 5000]
|
||||
train_batch_size_per_card: 16
|
||||
test_batch_size_per_card: 16
|
||||
image_shape: [3, 512, 512]
|
||||
|
|
|
@ -6,7 +6,7 @@ Global:
|
|||
print_batch_step: 2
|
||||
save_model_dir: ./output/det_db/
|
||||
save_epoch_step: 200
|
||||
eval_batch_step: 5000
|
||||
eval_batch_step: [5000, 5000]
|
||||
train_batch_size_per_card: 8
|
||||
test_batch_size_per_card: 16
|
||||
image_shape: [3, 640, 640]
|
||||
|
|
|
@ -6,7 +6,7 @@ Global:
|
|||
print_batch_step: 5
|
||||
save_model_dir: ./output/det_east/
|
||||
save_epoch_step: 200
|
||||
eval_batch_step: 5000
|
||||
eval_batch_step: [5000, 5000]
|
||||
train_batch_size_per_card: 8
|
||||
test_batch_size_per_card: 16
|
||||
image_shape: [3, 512, 512]
|
||||
|
|
|
@ -22,7 +22,7 @@
|
|||
| print_batch_step | 设置打印log间隔 | 10 | \ |
|
||||
| save_model_dir | 设置模型保存路径 | output/{算法名称} | \ |
|
||||
| save_epoch_step | 设置模型保存间隔 | 3 | \ |
|
||||
| eval_batch_step | 设置模型评估间隔 | 2000 | \ |
|
||||
| eval_batch_step | 设置模型评估间隔 | 2000 或 [1000, 2000] | 2000 表示每2000次迭代评估一次,[1000, 2000]表示从1000次迭代开始,每2000次评估一次 |
|
||||
|train_batch_size_per_card | 设置训练时单卡batch size | 256 | \ |
|
||||
| test_batch_size_per_card | 设置评估时单卡batch size | 256 | \ |
|
||||
| image_shape | 设置输入图片尺寸 | [3, 32, 100] | \ |
|
||||
|
|
|
@ -22,7 +22,7 @@ Take `rec_chinese_lite_train.yml` as an example
|
|||
| print_batch_step | Set print log interval | 10 | \ |
|
||||
| save_model_dir | Set model save path | output/{model_name} | \ |
|
||||
| save_epoch_step | Set model save interval | 3 | \ |
|
||||
| eval_batch_step | Set the model evaluation interval | 2000 | \ |
|
||||
| eval_batch_step | Set the model evaluation interval |2000 or [1000, 2000] |runing evaluation every 2000 iters or evaluation is run every 2000 iterations after the 1000th iteration |
|
||||
|train_batch_size_per_card | Set the batch size during training | 256 | \ |
|
||||
| test_batch_size_per_card | Set the batch size during testing | 256 | \ |
|
||||
| image_shape | Set input image size | [3, 32, 100] | \ |
|
||||
|
|
|
@ -219,6 +219,13 @@ def train_eval_det_run(config, exe, train_info_dict, eval_info_dict):
|
|||
epoch_num = config['Global']['epoch_num']
|
||||
print_batch_step = config['Global']['print_batch_step']
|
||||
eval_batch_step = config['Global']['eval_batch_step']
|
||||
start_eval_step = 0
|
||||
if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
|
||||
start_eval_step = eval_batch_step[0]
|
||||
eval_batch_step = eval_batch_step[1]
|
||||
logger.info(
|
||||
"During the training process, after the {}th iteration, an evaluation is run every {} iterations".
|
||||
format(start_eval_step, eval_batch_step))
|
||||
save_epoch_step = config['Global']['save_epoch_step']
|
||||
save_model_dir = config['Global']['save_model_dir']
|
||||
if not os.path.exists(save_model_dir):
|
||||
|
@ -246,7 +253,7 @@ def train_eval_det_run(config, exe, train_info_dict, eval_info_dict):
|
|||
t2 = time.time()
|
||||
train_batch_elapse = t2 - t1
|
||||
train_stats.update(stats)
|
||||
if train_batch_id > 0 and train_batch_id \
|
||||
if train_batch_id > start_eval_step and (train_batch_id -start_eval_step) \
|
||||
% print_batch_step == 0:
|
||||
logs = train_stats.log()
|
||||
strs = 'epoch: {}, iter: {}, {}, time: {:.3f}'.format(
|
||||
|
@ -286,6 +293,13 @@ def train_eval_rec_run(config, exe, train_info_dict, eval_info_dict):
|
|||
epoch_num = config['Global']['epoch_num']
|
||||
print_batch_step = config['Global']['print_batch_step']
|
||||
eval_batch_step = config['Global']['eval_batch_step']
|
||||
start_eval_step = 0
|
||||
if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
|
||||
start_eval_step = eval_batch_step[0]
|
||||
eval_batch_step = eval_batch_step[1]
|
||||
logger.info(
|
||||
"During the training process, after the {}th iteration, an evaluation is run every {} iterations".
|
||||
format(start_eval_step, eval_batch_step))
|
||||
save_epoch_step = config['Global']['save_epoch_step']
|
||||
save_model_dir = config['Global']['save_model_dir']
|
||||
if not os.path.exists(save_model_dir):
|
||||
|
@ -324,7 +338,7 @@ def train_eval_rec_run(config, exe, train_info_dict, eval_info_dict):
|
|||
train_batch_elapse = t2 - t1
|
||||
stats = {'loss': loss, 'acc': acc}
|
||||
train_stats.update(stats)
|
||||
if train_batch_id > 0 and train_batch_id \
|
||||
if train_batch_id > start_eval_step and (train_batch_id - start_eval_step) \
|
||||
% print_batch_step == 0:
|
||||
logs = train_stats.log()
|
||||
strs = 'epoch: {}, iter: {}, lr: {:.6f}, {}, time: {:.3f}'.format(
|
||||
|
|
Loading…
Reference in New Issue