change config; add doc
This commit is contained in:
parent
d3dcaed41c
commit
181b2933c1
|
@ -0,0 +1,109 @@
|
||||||
|
### 快速上手
|
||||||
|
|
||||||
|
Style-Text是对百度自研文本编辑算法《Editing Text in the Wild》中提出的SRNet网络的改进,不同于常用的GAN的方法只选择一个分支,该工具将文本合成任务分解为三个子模块,文本风格迁移模块、背景抽取模块和前背景融合模块,来提升合成数据的效果。下图显示了一些示例结果。
|
||||||
|
|
||||||
|
|
||||||
|
此外,在实际铭牌文本识别场景和韩语文本识别场景,验证了该合成工具的有效性,具体如下。
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#### 环境配置
|
||||||
|
|
||||||
|
1. 参考[快速安装](./installation.md),安装PaddlePaddle并准备环境。
|
||||||
|
2. 进入`style_text_rec`目录,下载模型,并解压:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cd tools/style_text_rec
|
||||||
|
wget /path/to/style_text_models.zip
|
||||||
|
unzip style_text_models.zip
|
||||||
|
```
|
||||||
|
|
||||||
|
您可以在[此处]()下载模型文件。如果您选择了其他下载位置,请在`configs/config.yml`中修改模型文件的地址,修改时需要同时修改这三个配置:
|
||||||
|
|
||||||
|
```
|
||||||
|
bg_generator:
|
||||||
|
pretrain: style_text_models/bg_generator
|
||||||
|
...
|
||||||
|
text_generator:
|
||||||
|
pretrain: style_text_models/text_generator
|
||||||
|
...
|
||||||
|
fusion_generator:
|
||||||
|
pretrain: style_text_models/fusion_generator
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#### 合成单张图片
|
||||||
|
|
||||||
|
1. 运行tools/synth_image,生成示例图片:
|
||||||
|
|
||||||
|
```python
|
||||||
|
python -m tools.synth_image -c configs/config.yml
|
||||||
|
```
|
||||||
|
|
||||||
|
1. 运行后,会生成`fake_busion.jpg`,即为最终结果。除此之外,程序还会生成并保存中间结果:
|
||||||
|
* `fake_bg.jpg`:为风格参考图去掉文字后的背景;
|
||||||
|
* `fake_text.jpg`:是用提供的字符串,仿照风格参考图中文字的风格,生成在灰色背景上的文字图片。
|
||||||
|
|
||||||
|
2. 如果您想尝试其他风格图像和文字的效果,可以在`tools/synth_image.py`中修改:
|
||||||
|
* `img = cv2.imread("examples/style_images/1.jpg")`:请在此处修改风格图像的目录;
|
||||||
|
* `corpus = "PaddleOCR"`:请在此处修改要使用的语料文本
|
||||||
|
* 注意:请修改语言选项(`language = "en"`)和语料相对应,目前我们支持英文、简体中文和韩语。
|
||||||
|
|
||||||
|
3. 在`tools/synth_image.py`中,我们还提供了一个`batch_synth_images`方法,可以两两组合语料和图片,批量生成一批数据。
|
||||||
|
|
||||||
|
### 高级使用
|
||||||
|
|
||||||
|
#### 组件介绍
|
||||||
|
|
||||||
|
`Style Text Rec`主要包含以下组件:
|
||||||
|
|
||||||
|
* `style_samplers`:风格图片采样器,负责返回风格图片。目前我们提供了`DatasetSampler`,可以从一个有标注的数据集中采样。
|
||||||
|
|
||||||
|
* `corpus_generators`:语料生成器,负责生成语料。目前提供了两种语料成生成器:
|
||||||
|
* `EnNumCorpus`:根据给定的长度生成随机字符串,字符可能是大小写英文字母、数字和空格。
|
||||||
|
* `FileCorpus`:读取指定的文本文件,并随机返回其中的单词.
|
||||||
|
|
||||||
|
* `text_drawers`:标准字体图片生成器,负责根据输入的语料,生成标准字体的图片。注意,使用该组件时,一定要根据语料修改对应的语言信息,否则可能会书写失败。
|
||||||
|
|
||||||
|
* `predictors`:预测器,根据给定的风格图片和标准字体图片,调用深度学习模型,生成新的数据。`predictor`是整个算法的核心模块。
|
||||||
|
|
||||||
|
* `writers`:文件输出器,负责将合成的图片与标签文件写入硬盘。
|
||||||
|
|
||||||
|
* `synthesisers`:合成器,负责调用各个模块,完成数据合成。
|
||||||
|
|
||||||
|
### 合成数据集
|
||||||
|
|
||||||
|
在开始合成数据集前,需要准备一些素材。
|
||||||
|
|
||||||
|
首先,需要风格图片作为合成图片的参考依据,这些数据可以是用作训练OCR识别模型的数据集。本例中使用带有标注文件的数据集作为风格图片.
|
||||||
|
|
||||||
|
1. 在`configs/dataset_config.yml`中配置输入数据路径。
|
||||||
|
* `StyleSamplerl`:
|
||||||
|
* `method`:使用的风格图片采样方法;
|
||||||
|
* `image_home`:风格图片目录;
|
||||||
|
* `label_file`:风格图片路径列表文件,如果所用数据集有label,则label_file为label文件路径;
|
||||||
|
* `with_label`:标志`label_file`是否为label文件。
|
||||||
|
|
||||||
|
* `CorpusGenerator`:
|
||||||
|
* `method`:语料生成方法,目前有`FileCorpus`和`EnNumCorpus`可选。如果使用`EnNumCorpus`,则不需要填写其他配置,否则需要修改`corpus_file`和`language`;
|
||||||
|
* `language`:语料的语种;
|
||||||
|
* `corpus_file`: 语料文件路径。
|
||||||
|
|
||||||
|
2. 运行`tools/synth_dataset`合成数据:
|
||||||
|
|
||||||
|
``` bash
|
||||||
|
python -m tools.synth_dataset -c configs/dataset_config.yml
|
||||||
|
```
|
||||||
|
|
||||||
|
3. 如果您想使用并行方式来快速合成数据,可以通过启动多个进程,在启动时需要指定不同的`tag`(`-t`),如下所示:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python -m tools.synth_dataset -t 0 -c configs/dataset_config.yml
|
||||||
|
python -m tools.synth_dataset -t 1 -c configs/dataset_config.yml
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
### 使用合成数据集进行OCR识别训练
|
||||||
|
|
||||||
|
在完成上述操作后,即可得到用于OCR识别的合成数据集,接下来请参考[OCR识别文档](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/recognition.md#%E5%90%AF%E5%8A%A8%E8%AE%AD%E7%BB%83),完成训练。
|
|
@ -0,0 +1,106 @@
|
||||||
|
### Quick Start
|
||||||
|
|
||||||
|
`Style-Text` is an improvement of the SRNet network proposed in Baidu's self-developed text editing algorithm "Editing Text in the Wild". It is different from the commonly used GAN methods. This tool decomposes the text synthesis task into three sub-modules to improve the effect of synthetic data: text style transfer module, background extraction module and fusion module.
|
||||||
|
|
||||||
|
The following figure shows some example results. In addition, the actual `nameplate text recognition` scene and `the Korean text recognition` scene verify the effectiveness of the synthesis tool, as follows.
|
||||||
|
|
||||||
|
|
||||||
|
#### Preparation
|
||||||
|
|
||||||
|
1. Please refer the [QUICK INSTALLATION](./installation_en.md) to install PaddlePaddle.
|
||||||
|
2. Download the pretrained models and unzip:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cd tools/style_text_rec
|
||||||
|
wget /path/to/style_text_models.zip
|
||||||
|
unzip style_text_models.zip
|
||||||
|
```
|
||||||
|
|
||||||
|
You can dowload models [here](). If you save the model files in other folders, please edit the three model paths in `configs/config.yml`:
|
||||||
|
|
||||||
|
```
|
||||||
|
bg_generator:
|
||||||
|
pretrain: style_text_rec/bg_generator
|
||||||
|
...
|
||||||
|
text_generator:
|
||||||
|
pretrain: style_text_models/text_generator
|
||||||
|
...
|
||||||
|
fusion_generator:
|
||||||
|
pretrain: style_text_models/fusion_generator
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#### Demo
|
||||||
|
|
||||||
|
1. You can use the following commands to run a demo:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python -m tools.synth_image -c configs/config.yml
|
||||||
|
```
|
||||||
|
|
||||||
|
2. The results are `fake_bg.jpg`, `fake_text.jpg` and `fake_fusion.jpg` as shown in the figure above. Above them:
|
||||||
|
* `fake_text.jpg` is the generated image with the same font style as `Style Input`;
|
||||||
|
* `fake_bg.jpg` is the generated image of `Style Input` after removing foreground.
|
||||||
|
* `fake_fusion.jpg` is the final result, that is synthesised by `fake_text.jpg` and `fake_bg.jpg`.
|
||||||
|
|
||||||
|
3. If want to generate image by other `Style Input` or `Text Input`, you can modify the `tools/synth_image.py`:
|
||||||
|
* `img = cv2.imread("examples/style_images/1.jpg")`: the path of `Style Input`;
|
||||||
|
* `corpus = "PaddleOCR"`: the `Text Input`;
|
||||||
|
* Notice:modify the language option(`language = "en"`) to adapt `Text Input`, that support `en`, `ch`, `ko`.
|
||||||
|
|
||||||
|
4. We also provide `batch_synth_images` mothod, that can combine corpus and pictures in pairs to generate a batch of data.
|
||||||
|
|
||||||
|
### Advanced Usage
|
||||||
|
|
||||||
|
#### Components
|
||||||
|
|
||||||
|
`Style Text Rec` mainly contains the following components:
|
||||||
|
|
||||||
|
* `style_samplers`: It can sample `Style Input` from a dataset. Now, We only provide `DatasetSampler`.
|
||||||
|
|
||||||
|
* `corpus_generators`: It can generate corpus. Now, wo only provide two `corpus_generators`:
|
||||||
|
* `EnNumCorpus`: It can generate a random string according to a given length, including uppercase and lowercase English letters, numbers and spaces.
|
||||||
|
* `FileCorpus`: It can read a text file and randomly return the words in it.
|
||||||
|
|
||||||
|
* `text_drawers`: It can generate `Text Input`(text picture in standard font according to the input corpus). Note that when using, you have to modify the language information according to the corpus.
|
||||||
|
|
||||||
|
* `predictors`: It can call the deep learning model to generate new data based on the `Style Input` and `Text Input`.
|
||||||
|
|
||||||
|
* `writers`: It can write the generated pictures(`fake_bg.jpg`, `fake_text.jpg` and `fake_fusion.jpg`) and label information to the disk.
|
||||||
|
|
||||||
|
* `synthesisers`: It can call the all modules to complete the work.
|
||||||
|
|
||||||
|
### Generate Dataset
|
||||||
|
|
||||||
|
Before the start, you need to prepare some data as material.
|
||||||
|
First, you should have the style reference data for synthesis tasks, which are generally used as datasets for OCR recognition tasks.
|
||||||
|
|
||||||
|
1. The referenced dataset can be specifed in `configs/dataset_config.yml`:
|
||||||
|
* `StyleSampler`:
|
||||||
|
* `method`: The method of `StyleSampler`.
|
||||||
|
* `image_home`: The directory of pictures.
|
||||||
|
* `label_file`: The list of pictures path if `with_label` is `false`, otherwise, the label file path.
|
||||||
|
* `with_label`: The `label_file` is label file or not.
|
||||||
|
|
||||||
|
* `CorpusGenerator`:
|
||||||
|
* `method`: The mothod of `CorpusGenerator`. If `FileCorpus` used, you need modify `corpus_file` and `language` accordingly, if `EnNumCorpus`, other configurations is not needed.
|
||||||
|
* `language`: The language of the corpus. Needed if method is not `EnNumCorpus`.
|
||||||
|
* `corpus_file`: The corpus file path. Needed if method is not `EnNumCorpus`.
|
||||||
|
|
||||||
|
2. You can run the following command to start synthesis task:
|
||||||
|
|
||||||
|
``` bash
|
||||||
|
python -m tools.synth_dataset.py -c configs/dataset_config.yml
|
||||||
|
```
|
||||||
|
|
||||||
|
3. You can using the following command to start multiple synthesis tasks in a multi-threaded manner, which needed to specifying tags by `-t`:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python -m tools.synth_dataset.py -t 0 -c configs/dataset_config.yml
|
||||||
|
python -m tools.synth_dataset.py -t 1 -c configs/dataset_config.yml
|
||||||
|
```
|
||||||
|
|
||||||
|
### OCR Recognition Training
|
||||||
|
|
||||||
|
After completing the above operations, you can get the synthetic data set for OCR recognition. Next, please complete the training by refering to [OCR Recognition Document](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/recognition. md#%E5%90%AF%E5%8A%A8%E8%AE%AD%E7%BB%83).
|
|
@ -23,7 +23,7 @@ Predictor:
|
||||||
- 0.5
|
- 0.5
|
||||||
expand_result: false
|
expand_result: false
|
||||||
bg_generator:
|
bg_generator:
|
||||||
pretrain: models/style_text_rec/bg_generator
|
pretrain: style_text_models/bg_generator
|
||||||
module_name: bg_generator
|
module_name: bg_generator
|
||||||
generator_type: BgGeneratorWithMask
|
generator_type: BgGeneratorWithMask
|
||||||
encode_dim: 64
|
encode_dim: 64
|
||||||
|
@ -33,7 +33,7 @@ Predictor:
|
||||||
conv_block_dilation: true
|
conv_block_dilation: true
|
||||||
output_factor: 1.05
|
output_factor: 1.05
|
||||||
text_generator:
|
text_generator:
|
||||||
pretrain: models/style_text_rec/text_generator
|
pretrain: style_text_models/text_generator
|
||||||
module_name: text_generator
|
module_name: text_generator
|
||||||
generator_type: TextGenerator
|
generator_type: TextGenerator
|
||||||
encode_dim: 64
|
encode_dim: 64
|
||||||
|
@ -42,7 +42,7 @@ Predictor:
|
||||||
conv_block_dropout: false
|
conv_block_dropout: false
|
||||||
conv_block_dilation: true
|
conv_block_dilation: true
|
||||||
fusion_generator:
|
fusion_generator:
|
||||||
pretrain: models/style_text_rec/fusion_generator
|
pretrain: style_text_models/fusion_generator
|
||||||
module_name: fusion_generator
|
module_name: fusion_generator
|
||||||
generator_type: FusionGeneratorSimple
|
generator_type: FusionGeneratorSimple
|
||||||
encode_dim: 64
|
encode_dim: 64
|
||||||
|
|
Loading…
Reference in New Issue