Adaptation of Chinese and r34/18
This commit is contained in:
parent
7b201a3855
commit
1b19050391
|
@ -214,6 +214,8 @@ class SimpleReader(object):
|
|||
self.mode = params['mode']
|
||||
self.infer_img = params['infer_img']
|
||||
self.use_tps = False
|
||||
if "num_heads" in params:
|
||||
self.num_heads = params['num_heads']
|
||||
if "tps" in params:
|
||||
self.use_tps = True
|
||||
self.use_distort = False
|
||||
|
@ -251,6 +253,13 @@ class SimpleReader(object):
|
|||
img = cv2.imread(single_img)
|
||||
if img.shape[-1] == 1 or len(list(img.shape)) == 2:
|
||||
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
||||
if self.loss_type == 'srn':
|
||||
norm_img = process_image_srn(
|
||||
img=img,
|
||||
image_shape=self.image_shape,
|
||||
num_heads=self.num_heads,
|
||||
max_text_length=self.max_text_length)
|
||||
else:
|
||||
norm_img = process_image(
|
||||
img=img,
|
||||
image_shape=self.image_shape,
|
||||
|
@ -286,6 +295,17 @@ class SimpleReader(object):
|
|||
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
||||
|
||||
label = substr[1]
|
||||
if self.loss_type == "srn":
|
||||
outs = process_image_srn(
|
||||
img=img,
|
||||
image_shape=self.image_shape,
|
||||
num_heads=self.num_heads,
|
||||
max_text_length=self.max_text_length,
|
||||
label=label,
|
||||
char_ops=self.char_ops,
|
||||
loss_type=self.loss_type)
|
||||
|
||||
else:
|
||||
outs = process_image(
|
||||
img=img,
|
||||
image_shape=self.image_shape,
|
||||
|
|
|
@ -410,7 +410,8 @@ def resize_norm_img_srn(img, image_shape):
|
|||
|
||||
def srn_other_inputs(image_shape,
|
||||
num_heads,
|
||||
max_text_length):
|
||||
max_text_length,
|
||||
char_num):
|
||||
|
||||
imgC, imgH, imgW = image_shape
|
||||
feature_dim = int((imgH / 8) * (imgW / 8))
|
||||
|
@ -418,7 +419,7 @@ def srn_other_inputs(image_shape,
|
|||
encoder_word_pos = np.array(range(0, feature_dim)).reshape((feature_dim, 1)).astype('int64')
|
||||
gsrm_word_pos = np.array(range(0, max_text_length)).reshape((max_text_length, 1)).astype('int64')
|
||||
|
||||
lbl_weight = np.array([37] * max_text_length).reshape((-1,1)).astype('int64')
|
||||
lbl_weight = np.array([int(char_num-1)] * max_text_length).reshape((-1,1)).astype('int64')
|
||||
|
||||
gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
|
||||
gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape([-1, 1, max_text_length, max_text_length])
|
||||
|
@ -441,17 +442,18 @@ def process_image_srn(img,
|
|||
loss_type=None):
|
||||
norm_img = resize_norm_img_srn(img, image_shape)
|
||||
norm_img = norm_img[np.newaxis, :]
|
||||
char_num = char_ops.get_char_num()
|
||||
|
||||
[lbl_weight, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
|
||||
srn_other_inputs(image_shape, num_heads, max_text_length)
|
||||
srn_other_inputs(image_shape, num_heads, max_text_length,char_num)
|
||||
|
||||
if label is not None:
|
||||
char_num = char_ops.get_char_num()
|
||||
text = char_ops.encode(label)
|
||||
if len(text) == 0 or len(text) > max_text_length:
|
||||
return None
|
||||
else:
|
||||
if loss_type == "srn":
|
||||
text_padded = [37] * max_text_length
|
||||
text_padded = [int(char_num-1)] * max_text_length
|
||||
for i in range(len(text)):
|
||||
text_padded[i] = text[i]
|
||||
lbl_weight[i] = [1.0]
|
||||
|
|
|
@ -81,6 +81,23 @@ class ResNet():
|
|||
num_filters=num_filters[block],
|
||||
stride=stride_list[block] if i == 0 else 1, name=conv_name)
|
||||
F.append(conv)
|
||||
else:
|
||||
for block in range(len(depth)):
|
||||
for i in range(depth[block]):
|
||||
conv_name = "res" + str(block + 2) + chr(97 + i)
|
||||
|
||||
if i == 0 and block != 0:
|
||||
stride = (2, 1)
|
||||
else:
|
||||
stride = (1, 1)
|
||||
|
||||
conv = self.basic_block(
|
||||
input=conv,
|
||||
num_filters=num_filters[block],
|
||||
stride=stride,
|
||||
if_first=block == i == 0,
|
||||
name=conv_name)
|
||||
F.append(conv)
|
||||
|
||||
base = F[-1]
|
||||
for i in [-2, -3]:
|
||||
|
|
|
@ -26,8 +26,6 @@ class CharacterOps(object):
|
|||
self.character_type = config['character_type']
|
||||
self.loss_type = config['loss_type']
|
||||
self.max_text_len = config['max_text_length']
|
||||
if self.loss_type == "srn" and self.character_type != "en":
|
||||
raise Exception("SRN can only support in character_type == en")
|
||||
if self.character_type == "en":
|
||||
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
|
||||
dict_character = list(self.character_str)
|
||||
|
@ -160,13 +158,15 @@ def cal_predicts_accuracy_srn(char_ops,
|
|||
acc_num = 0
|
||||
img_num = 0
|
||||
|
||||
char_num = char_ops.get_char_num()
|
||||
|
||||
total_len = preds.shape[0]
|
||||
img_num = int(total_len / max_text_len)
|
||||
for i in range(img_num):
|
||||
cur_label = []
|
||||
cur_pred = []
|
||||
for j in range(max_text_len):
|
||||
if labels[j + i * max_text_len] != 37: #0
|
||||
if labels[j + i * max_text_len] != int(char_num-1): #0
|
||||
cur_label.append(labels[j + i * max_text_len][0])
|
||||
else:
|
||||
break
|
||||
|
@ -178,7 +178,7 @@ def cal_predicts_accuracy_srn(char_ops,
|
|||
elif j == len(cur_label) and j == max_text_len:
|
||||
acc_num += 1
|
||||
break
|
||||
elif j == len(cur_label) and preds[j + i * max_text_len][0] == 37:
|
||||
elif j == len(cur_label) and preds[j + i * max_text_len][0] == int(char_num-1):
|
||||
acc_num += 1
|
||||
break
|
||||
acc = acc_num * 1.0 / img_num
|
||||
|
|
|
@ -140,12 +140,12 @@ def main():
|
|||
preds = preds.reshape(-1)
|
||||
preds_text = char_ops.decode(preds)
|
||||
elif loss_type == "srn":
|
||||
cur_pred = []
|
||||
char_num = char_ops.get_char_num()
|
||||
preds = np.array(predict[0])
|
||||
preds = preds.reshape(-1)
|
||||
probs = np.array(predict[1])
|
||||
ind = np.argmax(probs, axis=1)
|
||||
valid_ind = np.where(preds != 37)[0]
|
||||
valid_ind = np.where(preds != int(char_num-1))[0]
|
||||
if len(valid_ind) == 0:
|
||||
continue
|
||||
score = np.mean(probs[valid_ind, ind[valid_ind]])
|
||||
|
|
Loading…
Reference in New Issue