Merge branch 'dygraph' into pgnet-v1

This commit is contained in:
Double_V 2021-03-18 16:46:56 +08:00 committed by GitHub
commit 1bbc3f6872
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 19 additions and 8 deletions

View File

@ -28,7 +28,9 @@ PaddleOCR开源的文本检测算法列表
| --- | --- | --- | --- | --- | --- |
|SAST|ResNet50_vd|89.63%|78.44%|83.66%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)|
**说明:** SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载[百度云地址](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (提取码: 2bpi)
**说明:** SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载
* [百度云地址](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (提取码: 2bpi)
* [Google Drive下载地址](https://drive.google.com/drive/folders/1ll2-XEVyCQLpJjawLDiRlvo_i4BqHCJe?usp=sharing)
PaddleOCR文本检测算法的训练和使用请参考文档教程中[模型训练/评估中的文本检测部分](./detection.md)。

View File

@ -31,7 +31,9 @@ On Total-Text dataset, the text detection result is as follows:
| --- | --- | --- | --- | --- | --- |
|SAST|ResNet50_vd|89.63%|78.44%|83.66%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)|
**Note** Additional data, like icdar2013, icdar2017, COCO-Text, ArT, was added to the model training of SAST. Download English public dataset in organized format used by PaddleOCR from [Baidu Drive](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (download code: 2bpi).
**Note** Additional data, like icdar2013, icdar2017, COCO-Text, ArT, was added to the model training of SAST. Download English public dataset in organized format used by PaddleOCR from:
* [Baidu Drive](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (download code: 2bpi).
* [Google Drive](https://drive.google.com/drive/folders/1ll2-XEVyCQLpJjawLDiRlvo_i4BqHCJe?usp=sharing)
For the training guide and use of PaddleOCR text detection algorithms, please refer to the document [Text detection model training/evaluation/prediction](./detection_en.md)

View File

@ -236,7 +236,9 @@ class PaddleOCR(predict_system.TextSystem):
assert lang in model_urls[
'rec'], 'param lang must in {}, but got {}'.format(
model_urls['rec'].keys(), lang)
use_inner_dict = False
if postprocess_params.rec_char_dict_path is None:
use_inner_dict = True
postprocess_params.rec_char_dict_path = model_urls['rec'][lang][
'dict_path']
@ -263,9 +265,9 @@ class PaddleOCR(predict_system.TextSystem):
if postprocess_params.rec_algorithm not in SUPPORT_REC_MODEL:
logger.error('rec_algorithm must in {}'.format(SUPPORT_REC_MODEL))
sys.exit(0)
postprocess_params.rec_char_dict_path = str(
Path(__file__).parent / postprocess_params.rec_char_dict_path)
if use_inner_dict:
postprocess_params.rec_char_dict_path = str(
Path(__file__).parent / postprocess_params.rec_char_dict_path)
# init det_model and rec_model
super().__init__(postprocess_params)
@ -282,8 +284,13 @@ class PaddleOCR(predict_system.TextSystem):
if isinstance(img, list) and det == True:
logger.error('When input a list of images, det must be false')
exit(0)
if cls == False:
self.use_angle_cls = False
elif cls == True and self.use_angle_cls == False:
logger.warning(
'Since the angle classifier is not initialized, the angle classifier will not be uesd during the forward process'
)
self.use_angle_cls = cls
if isinstance(img, str):
# download net image
if img.startswith('http'):

View File

@ -38,7 +38,7 @@ class AttentionHead(nn.Layer):
return input_ont_hot
def forward(self, inputs, targets=None, batch_max_length=25):
batch_size = inputs.shape[0]
batch_size = paddle.shape(inputs)[0]
num_steps = batch_max_length
hidden = paddle.zeros((batch_size, self.hidden_size))

View File

@ -32,7 +32,7 @@ setup(
package_dir={'paddleocr': ''},
include_package_data=True,
entry_points={"console_scripts": ["paddleocr= paddleocr.paddleocr:main"]},
version='2.0.2',
version='2.0.3',
install_requires=requirements,
license='Apache License 2.0',
description='Awesome OCR toolkits based on PaddlePaddle 8.6M ultra-lightweight pre-trained model, support training and deployment among server, mobile, embeded and IoT devices',