Merge branch 'develop' of https://github.com/MissPenguin/PaddleOCR into develop
merge
This commit is contained in:
commit
1e49414dff
|
@ -142,7 +142,7 @@ Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation r
|
|||
|RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|
|
||||
|SRN|Resnet50_vd_fpn|88.33%|rec_r50fpn_vd_none_srn|[Download link](https://paddleocr.bj.bcebos.com/SRN/rec_r50fpn_vd_none_srn.tar)|
|
||||
|
||||
**Note:** SRN model uses data expansion method to expand the two training sets mentioned above, and the expanded data can be downloaded from [Baidu Drive](todo).
|
||||
**Note:** SRN model uses data expansion method to expand the two training sets mentioned above, and the expanded data can be downloaded from [Baidu Drive](https://pan.baidu.com/s/1-HSZ-ZVdqBF2HaBZ5pRAKA), Extract the code:y3ry.
|
||||
|
||||
The average accuracy of the two-stage training in the original paper is 89.74%, and that of one stage training in paddleocr is 88.33%. Both pre-trained weights can be downloaded [here](https://paddleocr.bj.bcebos.com/SRN/rec_r50fpn_vd_none_srn.tar).
|
||||
|
||||
|
@ -225,3 +225,4 @@ We welcome all the contributions to PaddleOCR and appreciate for your feedback v
|
|||
- Thanks [xiangyubo](https://github.com/xiangyubo) for contributing the handwritten Chinese OCR datasets.
|
||||
- Thanks [authorfu](https://github.com/authorfu) for contributing Android demo and [xiadeye](https://github.com/xiadeye) contributing iOS demo, respectively.
|
||||
- Thanks [BeyondYourself](https://github.com/BeyondYourself) for contributing many great suggestions and simplifying part of the code style.
|
||||
- Thanks [tangmq](https://gitee.com/tangmq) for contributing Dockerized deployment services to PaddleOCR and supporting the rapid release of callable Restful API services.
|
||||
|
|
|
@ -148,7 +148,8 @@ PaddleOCR开源的文本识别算法列表:
|
|||
|RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|
|
||||
|SRN|Resnet50_vd_fpn|88.33%|rec_r50fpn_vd_none_srn|[下载链接](https://paddleocr.bj.bcebos.com/SRN/rec_r50fpn_vd_none_srn.tar)|
|
||||
|
||||
**说明:** SRN模型使用了数据扰动方法对上述提到对两个训练集进行增广,增广后的数据可以在[百度网盘](todo)上下载。原始论文使用两阶段训练平均精度为89.74%,PaddleOCR中使用one-stage训练,平均精度为88.33%。两种预训练权重均在[下载链接](https://paddleocr.bj.bcebos.com/SRN/rec_r50fpn_vd_none_srn.tar)中。
|
||||
**说明:** SRN模型使用了数据扰动方法对上述提到对两个训练集进行增广,增广后的数据可以在[百度网盘](https://pan.baidu.com/s/1-HSZ-ZVdqBF2HaBZ5pRAKA)上下载,提取码: y3ry。
|
||||
原始论文使用两阶段训练平均精度为89.74%,PaddleOCR中使用one-stage训练,平均精度为88.33%。两种预训练权重均在[下载链接](https://paddleocr.bj.bcebos.com/SRN/rec_r50fpn_vd_none_srn.tar)中。
|
||||
|
||||
使用[LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/datasets.md#1icdar2019-lsvt)街景数据集根据真值将图crop出来30w数据,进行位置校准。此外基于LSVT语料生成500w合成数据训练中文模型,相关配置和预训练文件如下:
|
||||
|
||||
|
@ -224,3 +225,4 @@ PaddleOCR文本识别算法的训练和使用请参考文档教程中[模型训
|
|||
- 非常感谢 [xiangyubo](https://github.com/xiangyubo) 贡献手写中文OCR数据集
|
||||
- 非常感谢 [authorfu](https://github.com/authorfu) 贡献Android和[xiadeye](https://github.com/xiadeye) 贡献IOS的demo代码
|
||||
- 非常感谢 [BeyondYourself](https://github.com/BeyondYourself) 给PaddleOCR提了很多非常棒的建议,并简化了PaddleOCR的部分代码风格。
|
||||
- 非常感谢 [tangmq](https://gitee.com/tangmq) 给PaddleOCR增加Docker化部署服务,支持快速发布可调用的Restful API服务。
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
#Thu Aug 22 15:05:37 CST 2019
|
||||
#Wed Jul 22 23:48:44 CST 2020
|
||||
distributionBase=GRADLE_USER_HOME
|
||||
distributionPath=wrapper/dists
|
||||
zipStoreBase=GRADLE_USER_HOME
|
||||
|
|
|
@ -18,6 +18,8 @@ ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/dataset
|
|||
|
||||
若您本地没有数据集,可以在官网下载 [icdar2015](http://rrc.cvc.uab.es/?ch=4&com=downloads) 数据,用于快速验证。也可以参考[DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here),下载 benchmark 所需的lmdb格式数据集。
|
||||
|
||||
如果希望复现SRN的论文指标,需要下载离线[增广数据](https://pan.baidu.com/s/1-HSZ-ZVdqBF2HaBZ5pRAKA),提取码: y3ry。增广数据是由MJSynth和SynthText做旋转和扰动得到的。数据下载完成后请解压到 {your_path}/PaddleOCR/train_data/data_lmdb_release/training/ 路径下。
|
||||
|
||||
* 使用自己数据集:
|
||||
|
||||
若您希望使用自己的数据进行训练,请参考下文组织您的数据。
|
||||
|
@ -161,6 +163,7 @@ PaddleOCR支持训练和评估交替进行, 可以在 `configs/rec/rec_icdar15_t
|
|||
| rec_r34_vd_none_none_ctc.yml | Rosetta | Resnet34_vd | None | None | ctc |
|
||||
| rec_r34_vd_tps_bilstm_attn.yml | RARE | Resnet34_vd | tps | BiLSTM | attention |
|
||||
| rec_r34_vd_tps_bilstm_ctc.yml | STARNet | Resnet34_vd | tps | BiLSTM | ctc |
|
||||
| rec_r50fpn_vd_none_srn.yml | SRN | Resnet50_fpn_vd | None | rnn | srn |
|
||||
|
||||
训练中文数据,推荐使用`rec_chinese_lite_train.yml`,如您希望尝试其他算法在中文数据集上的效果,请参考下列说明修改配置文件:
|
||||
|
||||
|
|
|
@ -18,6 +18,8 @@ ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/dataset
|
|||
|
||||
If you do not have a dataset locally, you can download it on the official website [icdar2015](http://rrc.cvc.uab.es/?ch=4&com=downloads). Also refer to [DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here),download the lmdb format dataset required for benchmark
|
||||
|
||||
If you want to reproduce the paper indicators of SRN, you need to download offline [augmented data](https://pan.baidu.com/s/1-HSZ-ZVdqBF2HaBZ5pRAKA), extraction code: y3ry. The augmented data is obtained by rotation and perturbation of mjsynth and synthtext. Please unzip the data to {your_path}/PaddleOCR/train_data/data_lmdb_Release/training/path.
|
||||
|
||||
* Use your own dataset:
|
||||
|
||||
If you want to use your own data for training, please refer to the following to organize your data.
|
||||
|
|
|
@ -0,0 +1,28 @@
|
|||
# Version: 1.0.0
|
||||
FROM hub.baidubce.com/paddlepaddle/paddle:latest-gpu-cuda9.0-cudnn7-dev
|
||||
|
||||
# PaddleOCR base on Python3.7
|
||||
RUN pip3.7 install --upgrade pip -i https://pypi.tuna.tsinghua.edu.cn/simple
|
||||
|
||||
RUN python3.7 -m pip install paddlepaddle==1.7.2 -i https://pypi.tuna.tsinghua.edu.cn/simple
|
||||
|
||||
RUN pip3.7 install paddlehub --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple
|
||||
|
||||
RUN git clone https://gitee.com/PaddlePaddle/PaddleOCR
|
||||
|
||||
WORKDIR /PaddleOCR
|
||||
|
||||
RUN pip3.7 install -r requirments.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
|
||||
|
||||
RUN mkdir -p /PaddleOCR/inference
|
||||
# Download orc detect model(light version). if you want to change normal version, you can change ch_det_mv3_db_infer to ch_det_r50_vd_db_infer, also remember change det_model_dir in deploy/hubserving/ocr_system/params.py)
|
||||
ADD https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar /PaddleOCR/inference
|
||||
RUN tar xf /PaddleOCR/inference/ch_det_mv3_db_infer.tar -C /PaddleOCR/inference
|
||||
|
||||
# Download orc recognition model(light version). If you want to change normal version, you can change ch_rec_mv3_crnn_infer to ch_rec_r34_vd_crnn_enhance_infer, also remember change rec_model_dir in deploy/hubserving/ocr_system/params.py)
|
||||
ADD https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar /PaddleOCR/inference
|
||||
RUN tar xf /PaddleOCR/inference/ch_rec_mv3_crnn_infer.tar -C /PaddleOCR/inference
|
||||
|
||||
EXPOSE 8866
|
||||
|
||||
CMD ["/bin/bash","-c","export PYTHONPATH=. && hub install deploy/hubserving/ocr_system/ && hub serving start -m ocr_system"]
|
|
@ -0,0 +1,28 @@
|
|||
# Version: 1.0.0
|
||||
FROM hub.baidubce.com/paddlepaddle/paddle:latest-gpu-cuda10.0-cudnn7-dev
|
||||
|
||||
# PaddleOCR base on Python3.7
|
||||
RUN pip3.7 install --upgrade pip -i https://pypi.tuna.tsinghua.edu.cn/simple
|
||||
|
||||
RUN python3.7 -m pip install paddlepaddle-gpu==1.7.2.post107 -i https://pypi.tuna.tsinghua.edu.cn/simple
|
||||
|
||||
RUN pip3.7 install paddlehub --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple
|
||||
|
||||
RUN git clone https://gitee.com/PaddlePaddle/PaddleOCR
|
||||
|
||||
WORKDIR /home/PaddleOCR
|
||||
|
||||
RUN pip3.7 install -r requirments.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
|
||||
|
||||
RUN mkdir -p /PaddleOCR/inference
|
||||
# Download orc detect model(light version). if you want to change normal version, you can change ch_det_mv3_db_infer to ch_det_r50_vd_db_infer, also remember change det_model_dir in deploy/hubserving/ocr_system/params.py)
|
||||
ADD https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar /PaddleOCR/inference
|
||||
RUN tar xf /PaddleOCR/inference/ch_det_mv3_db_infer.tar -C /PaddleOCR/inference
|
||||
|
||||
# Download orc recognition model(light version). If you want to change normal version, you can change ch_rec_mv3_crnn_infer to ch_rec_r34_vd_crnn_enhance_infer, also remember change rec_model_dir in deploy/hubserving/ocr_system/params.py)
|
||||
ADD https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar /PaddleOCR/inference
|
||||
RUN tar xf /PaddleOCR/inference/ch_rec_mv3_crnn_infer.tar -C /PaddleOCR/inference
|
||||
|
||||
EXPOSE 8866
|
||||
|
||||
CMD ["/bin/bash","-c","export PYTHONPATH=. && hub install deploy/hubserving/ocr_system/ && hub serving start -m ocr_system"]
|
|
@ -0,0 +1,55 @@
|
|||
# Docker化部署服务
|
||||
在日常项目应用中,相信大家一般都会希望能通过Docker技术,把PaddleOCR服务打包成一个镜像,以便在Docker或k8s环境里,快速发布上线使用。
|
||||
|
||||
本文将提供一些标准化的代码来实现这样的目标。大家通过如下步骤可以把PaddleOCR项目快速发布成可调用的Restful API服务。(目前暂时先实现了基于HubServing模式的部署,后续作者计划增加PaddleServing模式的部署)
|
||||
|
||||
## 1.实施前提准备
|
||||
|
||||
需要先完成如下基本组件的安装:
|
||||
a. Docker环境
|
||||
b. 显卡驱动和CUDA 10.0+(GPU)
|
||||
c. NVIDIA Container Toolkit(GPU,Docker 19.03以上版本可以跳过此步)
|
||||
d. cuDNN 7.6+(GPU)
|
||||
|
||||
## 2.制作镜像
|
||||
a.下载PaddleOCR项目代码
|
||||
```
|
||||
git clone https://github.com/PaddlePaddle/PaddleOCR.git
|
||||
```
|
||||
b.切换至Dockerfile目录(注:需要区分cpu或gpu版本,下文以cpu为例,gpu版本需要替换一下关键字即可)
|
||||
```
|
||||
cd docker/cpu
|
||||
```
|
||||
c.生成镜像
|
||||
```
|
||||
docker build -t paddleocr:cpu .
|
||||
```
|
||||
|
||||
## 3.启动Docker容器
|
||||
a. CPU 版本
|
||||
```
|
||||
sudo docker run -dp 8866:8866 --name paddle_ocr paddleocr:cpu
|
||||
```
|
||||
b. GPU 版本 (通过NVIDIA Container Toolkit)
|
||||
```
|
||||
sudo nvidia-docker run -dp 8866:8866 --name paddle_ocr paddleocr:gpu
|
||||
```
|
||||
c. GPU 版本 (Docker 19.03以上版本,可以直接用如下命令)
|
||||
```
|
||||
sudo docker run -dp 8866:8866 --gpus all --name paddle_ocr paddleocr:gpu
|
||||
```
|
||||
d. 检查服务运行情况(出现:Successfully installed ocr_system和Running on http://0.0.0.0:8866/等信息,表示运行成功)
|
||||
```
|
||||
docker logs -f paddle_ocr
|
||||
```
|
||||
|
||||
## 4.测试服务
|
||||
a. 计算待识别图片的Base64编码(如果只是测试一下效果,可以通过免费的在线工具实现,如:http://tool.chinaz.com/tools/imgtobase/)
|
||||
b. 发送服务请求(可参见sample_request.txt中的值)
|
||||
```
|
||||
curl -H "Content-Type:application/json" -X POST --data "{\"images\": [\"填入图片Base64编码(需要删除'data:image/jpg;base64,')\"]}" http://localhost:8866/predict/ocr_system
|
||||
```
|
||||
c. 返回结果(如果调用成功,会返回如下结果)
|
||||
```
|
||||
{"msg":"","results":[[{"confidence":0.8403433561325073,"text":"约定","text_region":[[345,377],[641,390],[634,540],[339,528]]},{"confidence":0.8131805658340454,"text":"最终相遇","text_region":[[356,532],[624,530],[624,596],[356,598]]}]],"status":"0"}
|
||||
```
|
File diff suppressed because one or more lines are too long
|
@ -58,7 +58,7 @@ class RecModel(object):
|
|||
self.loss_type = global_params['loss_type']
|
||||
self.image_shape = global_params['image_shape']
|
||||
self.max_text_length = global_params['max_text_length']
|
||||
if "num_heads" in params:
|
||||
if "num_heads" in global_params:
|
||||
self.num_heads = global_params["num_heads"]
|
||||
else:
|
||||
self.num_heads = None
|
||||
|
|
Loading…
Reference in New Issue