add sast code

This commit is contained in:
licx 2020-08-15 17:26:00 +08:00
parent a4d245185e
commit 224667b895
15 changed files with 2110 additions and 28 deletions

View File

@ -0,0 +1,50 @@
Global:
algorithm: SAST
use_gpu: true
epoch_num: 2000
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/det_sast/
save_epoch_step: 20
eval_batch_step: 5000
train_batch_size_per_card: 8
test_batch_size_per_card: 8
image_shape: [3, 512, 512]
reader_yml: ./configs/det/det_sast_icdar15_reader.yml
pretrain_weights: ./pretrain_models/ResNet50_vd_ssld_pretrained/
save_res_path: ./output/det_sast/predicts_sast.txt
checkpoints:
save_inference_dir:
Architecture:
function: ppocr.modeling.architectures.det_model,DetModel
Backbone:
function: ppocr.modeling.backbones.det_resnet_vd_sast,ResNet
layers: 50
Head:
function: ppocr.modeling.heads.det_sast_head,SASTHead
model_name: large
only_fpn_up: False
# with_cab: False
with_cab: True
Loss:
function: ppocr.modeling.losses.det_sast_loss,SASTLoss
Optimizer:
function: ppocr.optimizer,RMSProp
base_lr: 0.001
decay:
function: piecewise_decay
boundaries: [30000, 50000, 80000, 100000, 150000]
decay_rate: 0.3
PostProcess:
function: ppocr.postprocess.sast_postprocess,SASTPostProcess
score_thresh: 0.5
sample_pts_num: 2
nms_thresh: 0.2
expand_scale: 1.0
shrink_ratio_of_width: 0.3

View File

@ -0,0 +1,50 @@
Global:
algorithm: SAST
use_gpu: true
epoch_num: 2000
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/det_sast/
save_epoch_step: 20
eval_batch_step: 5000
train_batch_size_per_card: 8
test_batch_size_per_card: 1
image_shape: [3, 512, 512]
reader_yml: ./configs/det/det_sast_totaltext_reader.yml
pretrain_weights: ./pretrain_models/ResNet50_vd_ssld_pretrained/
save_res_path: ./output/det_sast/predicts_sast.txt
checkpoints:
save_inference_dir:
Architecture:
function: ppocr.modeling.architectures.det_model,DetModel
Backbone:
function: ppocr.modeling.backbones.det_resnet_vd_sast,ResNet
layers: 50
Head:
function: ppocr.modeling.heads.det_sast_head,SASTHead
model_name: large
only_fpn_up: False
# with_cab: False
with_cab: True
Loss:
function: ppocr.modeling.losses.det_sast_loss,SASTLoss
Optimizer:
function: ppocr.optimizer,RMSProp
base_lr: 0.001
decay:
function: piecewise_decay
boundaries: [30000, 50000, 80000, 100000, 150000]
decay_rate: 0.3
PostProcess:
function: ppocr.postprocess.sast_postprocess,SASTPostProcess
score_thresh: 0.5
sample_pts_num: 6
nms_thresh: 0.2
expand_scale: 1.2
shrink_ratio_of_width: 0.2

View File

@ -0,0 +1,26 @@
TrainReader:
reader_function: ppocr.data.det.dataset_traversal,TrainReader
process_function: ppocr.data.det.sast_process,SASTProcessTrain
num_workers: 8
img_set_dir: ./train_data/
label_file_path: [./train_data/icdar13/train_label_json.txt, ./train_data/icdar15/train_label_json.txt, ./train_data/icdar17_mlt_latin/train_label_json.txt, ./train_data/coco_text_icdar_4pts/train_label_json.txt]
data_ratio_list: [0.1, 0.45, 0.3, 0.15]
min_crop_side_ratio: 0.3
min_crop_size: 24
min_text_size: 4
max_text_size: 512
EvalReader:
reader_function: ppocr.data.det.dataset_traversal,EvalTestReader
process_function: ppocr.data.det.sast_process,SASTProcessTest
img_set_dir: ./train_data/icdar2015/text_localization/
label_file_path: ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
max_side_len: 1536
TestReader:
reader_function: ppocr.data.det.dataset_traversal,EvalTestReader
process_function: ppocr.data.det.sast_process,SASTProcessTest
infer_img:
img_set_dir: ./train_data/icdar2015/text_localization/
label_file_path: ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
do_eval: True

View File

@ -0,0 +1,24 @@
TrainReader:
reader_function: ppocr.data.det.dataset_traversal,TrainReader
process_function: ppocr.data.det.sast_process,SASTProcessTrain
num_workers: 8
img_set_dir: ./train_data/
label_file_path: [./train_data/art_latin_icdar_14pt/train_no_tt_test/train_label_json.txt, ./train_data/total_text_icdar_14pt/train/train_label_json.txt]
data_ratio_list: [0.5, 0.5]
min_crop_side_ratio: 0.3
min_crop_size: 24
min_text_size: 4
max_text_size: 512
EvalReader:
reader_function: ppocr.data.det.dataset_traversal,EvalTestReader
process_function: ppocr.data.det.sast_process,SASTProcessTest
img_set_dir: ./train_data/afs/
label_file_path: ./train_data/afs/total_text/test_label_json.txt
max_side_len: 768
TestReader:
reader_function: ppocr.data.det.dataset_traversal,EvalTestReader
process_function: ppocr.data.det.sast_process,SASTProcessTest
infer_img:
max_side_len: 768

View File

@ -31,6 +31,11 @@ class TrainReader(object):
def __init__(self, params):
self.num_workers = params['num_workers']
self.label_file_path = params['label_file_path']
print(self.label_file_path)
self.use_mul_data = False
if isinstance(self.label_file_path, list):
self.use_mul_data = True
self.data_ratio_list = params['data_ratio_list']
self.batch_size = params['train_batch_size_per_card']
assert 'process_function' in params,\
"absence process_function in Reader"
@ -43,7 +48,7 @@ class TrainReader(object):
img_num = len(label_infor_list)
img_id_list = list(range(img_num))
random.shuffle(img_id_list)
if sys.platform == "win32":
if sys.platform == "win32" and self.num_workers != 1:
print("multiprocess is not fully compatible with Windows."
"num_workers will be 1.")
self.num_workers = 1
@ -54,8 +59,59 @@ class TrainReader(object):
continue
yield outs
def sample_iter_reader_mul():
batch_size = 1000
data_source_list = self.label_file_path
batch_size_list = list(map(int, [max(1.0, batch_size * x) for x in self.data_ratio_list]))
print(self.data_ratio_list, batch_size_list)
data_filename_list, data_size_list, fetch_record_list = [], [], []
for data_source in data_source_list:
image_files = open(data_source, "rb").readlines()
random.shuffle(image_files)
data_filename_list.append(image_files)
data_size_list.append(len(image_files))
fetch_record_list.append(0)
image_batch, poly_batch = [], []
# get a batch of img_fns and poly_fns
for i in range(0, len(batch_size_list)):
bs = batch_size_list[i]
ds = data_size_list[i]
image_names = data_filename_list[i]
fetch_record = fetch_record_list[i]
data_path = data_source_list[i]
for j in range(fetch_record, fetch_record + bs):
index = j % ds
image_batch.append(image_names[index])
if (fetch_record + bs) > ds:
fetch_record_list[i] = 0
random.shuffle(data_filename_list[i])
else:
fetch_record_list[i] = fetch_record + bs
if sys.platform == "win32":
print("multiprocess is not fully compatible with Windows."
"num_workers will be 1.")
self.num_workers = 1
for label_infor in image_batch:
outs = self.process(label_infor)
if outs is None:
continue
yield outs
def batch_iter_reader():
batch_outs = []
if self.use_mul_data:
print("Sample date from multiple datasets!")
for outs in sample_iter_reader_mul():
batch_outs.append(outs)
if len(batch_outs) == self.batch_size:
yield batch_outs
batch_outs = []
else:
for outs in sample_iter_reader():
batch_outs.append(outs)
if len(batch_outs) == self.batch_size:

View File

@ -0,0 +1,898 @@
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import math
import cv2
import numpy as np
import json
class SASTProcessTrain(object):
"""
SAST process function for training
"""
def __init__(self, params):
self.img_set_dir = params['img_set_dir']
self.min_crop_side_ratio = params['min_crop_side_ratio']
self.min_crop_size = params['min_crop_size']
image_shape = params['image_shape']
self.input_size = image_shape[1]
self.min_text_size = params['min_text_size']
self.max_text_size = params['max_text_size']
def convert_label_infor(self, label_infor):
label_infor = label_infor.decode()
label_infor = label_infor.encode('utf-8').decode('utf-8-sig')
substr = label_infor.strip("\n").split("\t")
img_path = self.img_set_dir + substr[0]
label = json.loads(substr[1])
nBox = len(label)
wordBBs, txts, txt_tags = [], [], []
for bno in range(0, nBox):
wordBB = label[bno]['points']
txt = label[bno]['transcription']
wordBBs.append(wordBB)
txts.append(txt)
if txt == '###':
txt_tags.append(True)
else:
txt_tags.append(False)
wordBBs = np.array(wordBBs, dtype=np.float32)
txt_tags = np.array(txt_tags, dtype=np.bool)
return img_path, wordBBs, txt_tags, txts
def quad_area(self, poly):
"""
compute area of a polygon
:param poly:
:return:
"""
edge = [
(poly[1][0] - poly[0][0]) * (poly[1][1] + poly[0][1]),
(poly[2][0] - poly[1][0]) * (poly[2][1] + poly[1][1]),
(poly[3][0] - poly[2][0]) * (poly[3][1] + poly[2][1]),
(poly[0][0] - poly[3][0]) * (poly[0][1] + poly[3][1])
]
return np.sum(edge) / 2.
def gen_quad_from_poly(self, poly):
"""
Generate min area quad from poly.
"""
point_num = poly.shape[0]
min_area_quad = np.zeros((4, 2), dtype=np.float32)
if True:
rect = cv2.minAreaRect(poly.astype(np.int32)) # (center (x,y), (width, height), angle of rotation)
center_point = rect[0]
box = np.array(cv2.boxPoints(rect))
first_point_idx = 0
min_dist = 1e4
for i in range(4):
dist = np.linalg.norm(box[(i + 0) % 4] - poly[0]) + \
np.linalg.norm(box[(i + 1) % 4] - poly[point_num // 2 - 1]) + \
np.linalg.norm(box[(i + 2) % 4] - poly[point_num // 2]) + \
np.linalg.norm(box[(i + 3) % 4] - poly[-1])
if dist < min_dist:
min_dist = dist
first_point_idx = i
for i in range(4):
min_area_quad[i] = box[(first_point_idx + i) % 4]
return min_area_quad
def check_and_validate_polys(self, polys, tags, xxx_todo_changeme):
"""
check so that the text poly is in the same direction,
and also filter some invalid polygons
:param polys:
:param tags:
:return:
"""
(h, w) = xxx_todo_changeme
if polys.shape[0] == 0:
return polys, np.array([]), np.array([])
polys[:, :, 0] = np.clip(polys[:, :, 0], 0, w - 1)
polys[:, :, 1] = np.clip(polys[:, :, 1], 0, h - 1)
validated_polys = []
validated_tags = []
hv_tags = []
for poly, tag in zip(polys, tags):
quad = self.gen_quad_from_poly(poly)
p_area = self.quad_area(quad)
if abs(p_area) < 1:
print('invalid poly')
continue
if p_area > 0:
if tag == False:
print('poly in wrong direction')
tag = True # reversed cases should be ignore
poly = poly[(0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1), :]
quad = quad[(0, 3, 2, 1), :]
len_w = np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[3] - quad[2])
len_h = np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[1] - quad[2])
hv_tag = 1
if len_w * 2.0 < len_h:
hv_tag = 0
validated_polys.append(poly)
validated_tags.append(tag)
hv_tags.append(hv_tag)
return np.array(validated_polys), np.array(validated_tags), np.array(hv_tags)
def crop_area(self, im, polys, tags, hv_tags, txts, crop_background=False, max_tries=25):
"""
make random crop from the input image
:param im:
:param polys:
:param tags:
:param crop_background:
:param max_tries: 50 -> 25
:return:
"""
h, w, _ = im.shape
pad_h = h // 10
pad_w = w // 10
h_array = np.zeros((h + pad_h * 2), dtype=np.int32)
w_array = np.zeros((w + pad_w * 2), dtype=np.int32)
for poly in polys:
poly = np.round(poly, decimals=0).astype(np.int32)
minx = np.min(poly[:, 0])
maxx = np.max(poly[:, 0])
w_array[minx + pad_w: maxx + pad_w] = 1
miny = np.min(poly[:, 1])
maxy = np.max(poly[:, 1])
h_array[miny + pad_h: maxy + pad_h] = 1
# ensure the cropped area not across a text
h_axis = np.where(h_array == 0)[0]
w_axis = np.where(w_array == 0)[0]
if len(h_axis) == 0 or len(w_axis) == 0:
return im, polys, tags, hv_tags, txts
for i in range(max_tries):
xx = np.random.choice(w_axis, size=2)
xmin = np.min(xx) - pad_w
xmax = np.max(xx) - pad_w
xmin = np.clip(xmin, 0, w - 1)
xmax = np.clip(xmax, 0, w - 1)
yy = np.random.choice(h_axis, size=2)
ymin = np.min(yy) - pad_h
ymax = np.max(yy) - pad_h
ymin = np.clip(ymin, 0, h - 1)
ymax = np.clip(ymax, 0, h - 1)
# if xmax - xmin < ARGS.min_crop_side_ratio * w or \
# ymax - ymin < ARGS.min_crop_side_ratio * h:
if xmax - xmin < self.min_crop_size or \
ymax - ymin < self.min_crop_size:
# area too small
continue
if polys.shape[0] != 0:
poly_axis_in_area = (polys[:, :, 0] >= xmin) & (polys[:, :, 0] <= xmax) \
& (polys[:, :, 1] >= ymin) & (polys[:, :, 1] <= ymax)
selected_polys = np.where(np.sum(poly_axis_in_area, axis=1) == 4)[0]
else:
selected_polys = []
if len(selected_polys) == 0:
# no text in this area
if crop_background:
txts_tmp = []
for selected_poly in selected_polys:
txts_tmp.append(txts[selected_poly])
txts = txts_tmp
return im[ymin : ymax + 1, xmin : xmax + 1, :], \
polys[selected_polys], tags[selected_polys], hv_tags[selected_polys], txts
else:
continue
im = im[ymin: ymax + 1, xmin: xmax + 1, :]
polys = polys[selected_polys]
tags = tags[selected_polys]
hv_tags = hv_tags[selected_polys]
txts_tmp = []
for selected_poly in selected_polys:
txts_tmp.append(txts[selected_poly])
txts = txts_tmp
polys[:, :, 0] -= xmin
polys[:, :, 1] -= ymin
return im, polys, tags, hv_tags, txts
return im, polys, tags, hv_tags, txts
def generate_direction_map(self, poly_quads, direction_map):
"""
"""
width_list = []
height_list = []
for quad in poly_quads:
quad_w = (np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[2] - quad[3])) / 2.0
quad_h = (np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[2] - quad[1])) / 2.0
width_list.append(quad_w)
height_list.append(quad_h)
norm_width = max(sum(width_list) / (len(width_list) + 1e-6), 1.0)
average_height = max(sum(height_list) / (len(height_list) + 1e-6), 1.0)
for quad in poly_quads:
direct_vector_full = ((quad[1] + quad[2]) - (quad[0] + quad[3])) / 2.0
direct_vector = direct_vector_full / (np.linalg.norm(direct_vector_full) + 1e-6) * norm_width
direction_label = tuple(map(float, [direct_vector[0], direct_vector[1], 1.0 / (average_height + 1e-6)]))
cv2.fillPoly(direction_map, quad.round().astype(np.int32)[np.newaxis, :, :], direction_label)
return direction_map
def calculate_average_height(self, poly_quads):
"""
"""
height_list = []
for quad in poly_quads:
quad_h = (np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[2] - quad[1])) / 2.0
height_list.append(quad_h)
average_height = max(sum(height_list) / len(height_list), 1.0)
return average_height
def generate_tcl_label(self, hw, polys, tags, ds_ratio,
tcl_ratio=0.3, shrink_ratio_of_width=0.15):
"""
Generate polygon.
"""
h, w = hw
h, w = int(h * ds_ratio), int(w * ds_ratio)
polys = polys * ds_ratio
score_map = np.zeros((h, w,), dtype=np.float32)
tbo_map = np.zeros((h, w, 5), dtype=np.float32)
training_mask = np.ones((h, w,), dtype=np.float32)
direction_map = np.ones((h, w, 3)) * np.array([0, 0, 1]).reshape([1, 1, 3]).astype(np.float32)
for poly_idx, poly_tag in enumerate(zip(polys, tags)):
poly = poly_tag[0]
tag = poly_tag[1]
# generate min_area_quad
min_area_quad, center_point = self.gen_min_area_quad_from_poly(poly)
min_area_quad_h = 0.5 * (np.linalg.norm(min_area_quad[0] - min_area_quad[3]) +
np.linalg.norm(min_area_quad[1] - min_area_quad[2]))
min_area_quad_w = 0.5 * (np.linalg.norm(min_area_quad[0] - min_area_quad[1]) +
np.linalg.norm(min_area_quad[2] - min_area_quad[3]))
if min(min_area_quad_h, min_area_quad_w) < self.min_text_size * ds_ratio \
or min(min_area_quad_h, min_area_quad_w) > self.max_text_size * ds_ratio:
continue
if tag:
# continue
cv2.fillPoly(training_mask, poly.astype(np.int32)[np.newaxis, :, :], 0.15)
else:
tcl_poly = self.poly2tcl(poly, tcl_ratio)
tcl_quads = self.poly2quads(tcl_poly)
poly_quads = self.poly2quads(poly)
# stcl map
stcl_quads, quad_index = self.shrink_poly_along_width(tcl_quads, shrink_ratio_of_width=shrink_ratio_of_width,
expand_height_ratio=1.0 / tcl_ratio)
# generate tcl map
cv2.fillPoly(score_map, np.round(stcl_quads).astype(np.int32), 1.0)
# generate tbo map
for idx, quad in enumerate(stcl_quads):
quad_mask = np.zeros((h, w), dtype=np.float32)
quad_mask = cv2.fillPoly(quad_mask, np.round(quad[np.newaxis, :, :]).astype(np.int32), 1.0)
tbo_map = self.gen_quad_tbo(poly_quads[quad_index[idx]], quad_mask, tbo_map)
return score_map, tbo_map, training_mask
def generate_tvo_and_tco(self, hw, polys, tags, tcl_ratio=0.3, ds_ratio=0.25):
"""
Generate tcl map, tvo map and tbo map.
"""
h, w = hw
h, w = int(h * ds_ratio), int(w * ds_ratio)
polys = polys * ds_ratio
poly_mask = np.zeros((h, w), dtype=np.float32)
tvo_map = np.ones((9, h, w), dtype=np.float32)
tvo_map[0:-1:2] = np.tile(np.arange(0, w), (h, 1))
tvo_map[1:-1:2] = np.tile(np.arange(0, w), (h, 1)).T
poly_tv_xy_map = np.zeros((8, h, w), dtype=np.float32)
# tco map
tco_map = np.ones((3, h, w), dtype=np.float32)
tco_map[0] = np.tile(np.arange(0, w), (h, 1))
tco_map[1] = np.tile(np.arange(0, w), (h, 1)).T
poly_tc_xy_map = np.zeros((2, h, w), dtype=np.float32)
poly_short_edge_map = np.ones((h, w), dtype=np.float32)
for poly, poly_tag in zip(polys, tags):
if poly_tag == True:
continue
# adjust point order for vertical poly
poly = self.adjust_point(poly)
# generate min_area_quad
min_area_quad, center_point = self.gen_min_area_quad_from_poly(poly)
min_area_quad_h = 0.5 * (np.linalg.norm(min_area_quad[0] - min_area_quad[3]) +
np.linalg.norm(min_area_quad[1] - min_area_quad[2]))
min_area_quad_w = 0.5 * (np.linalg.norm(min_area_quad[0] - min_area_quad[1]) +
np.linalg.norm(min_area_quad[2] - min_area_quad[3]))
# generate tcl map and text, 128 * 128
tcl_poly = self.poly2tcl(poly, tcl_ratio)
# generate poly_tv_xy_map
for idx in range(4):
cv2.fillPoly(poly_tv_xy_map[2 * idx],
np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
float(min(max(min_area_quad[idx, 0], 0), w)))
cv2.fillPoly(poly_tv_xy_map[2 * idx + 1],
np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
float(min(max(min_area_quad[idx, 1], 0), h)))
# generate poly_tc_xy_map
for idx in range(2):
cv2.fillPoly(poly_tc_xy_map[idx],
np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32), float(center_point[idx]))
# generate poly_short_edge_map
cv2.fillPoly(poly_short_edge_map,
np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
float(max(min(min_area_quad_h, min_area_quad_w), 1.0)))
# generate poly_mask and training_mask
cv2.fillPoly(poly_mask, np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32), 1)
tvo_map *= poly_mask
tvo_map[:8] -= poly_tv_xy_map
tvo_map[-1] /= poly_short_edge_map
tvo_map = tvo_map.transpose((1, 2, 0))
tco_map *= poly_mask
tco_map[:2] -= poly_tc_xy_map
tco_map[-1] /= poly_short_edge_map
tco_map = tco_map.transpose((1, 2, 0))
return tvo_map, tco_map
def adjust_point(self, poly):
"""
adjust point order.
"""
point_num = poly.shape[0]
if point_num == 4:
len_1 = np.linalg.norm(poly[0] - poly[1])
len_2 = np.linalg.norm(poly[1] - poly[2])
len_3 = np.linalg.norm(poly[2] - poly[3])
len_4 = np.linalg.norm(poly[3] - poly[0])
if (len_1 + len_3) * 1.5 < (len_2 + len_4):
poly = poly[[1, 2, 3, 0], :]
elif point_num > 4:
vector_1 = poly[0] - poly[1]
vector_2 = poly[1] - poly[2]
cos_theta = np.dot(vector_1, vector_2) / (np.linalg.norm(vector_1) * np.linalg.norm(vector_2) + 1e-6)
theta = np.arccos(np.round(cos_theta, decimals=4))
if abs(theta) > (70 / 180 * math.pi):
index = list(range(1, point_num)) + [0]
poly = poly[np.array(index), :]
return poly
def gen_min_area_quad_from_poly(self, poly):
"""
Generate min area quad from poly.
"""
point_num = poly.shape[0]
min_area_quad = np.zeros((4, 2), dtype=np.float32)
if point_num == 4:
min_area_quad = poly
center_point = np.sum(poly, axis=0) / 4
else:
rect = cv2.minAreaRect(poly.astype(np.int32)) # (center (x,y), (width, height), angle of rotation)
center_point = rect[0]
box = np.array(cv2.boxPoints(rect))
first_point_idx = 0
min_dist = 1e4
for i in range(4):
dist = np.linalg.norm(box[(i + 0) % 4] - poly[0]) + \
np.linalg.norm(box[(i + 1) % 4] - poly[point_num // 2 - 1]) + \
np.linalg.norm(box[(i + 2) % 4] - poly[point_num // 2]) + \
np.linalg.norm(box[(i + 3) % 4] - poly[-1])
if dist < min_dist:
min_dist = dist
first_point_idx = i
for i in range(4):
min_area_quad[i] = box[(first_point_idx + i) % 4]
return min_area_quad, center_point
def shrink_quad_along_width(self, quad, begin_width_ratio=0., end_width_ratio=1.):
"""
Generate shrink_quad_along_width.
"""
ratio_pair = np.array([[begin_width_ratio], [end_width_ratio]], dtype=np.float32)
p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair
p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair
return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]])
def shrink_poly_along_width(self, quads, shrink_ratio_of_width, expand_height_ratio=1.0):
"""
shrink poly with given length.
"""
upper_edge_list = []
def get_cut_info(edge_len_list, cut_len):
for idx, edge_len in enumerate(edge_len_list):
cut_len -= edge_len
if cut_len <= 0.000001:
ratio = (cut_len + edge_len_list[idx]) / edge_len_list[idx]
return idx, ratio
for quad in quads:
upper_edge_len = np.linalg.norm(quad[0] - quad[1])
upper_edge_list.append(upper_edge_len)
# length of left edge and right edge.
left_length = np.linalg.norm(quads[0][0] - quads[0][3]) * expand_height_ratio
right_length = np.linalg.norm(quads[-1][1] - quads[-1][2]) * expand_height_ratio
shrink_length = min(left_length, right_length, sum(upper_edge_list)) * shrink_ratio_of_width
# shrinking length
upper_len_left = shrink_length
upper_len_right = sum(upper_edge_list) - shrink_length
left_idx, left_ratio = get_cut_info(upper_edge_list, upper_len_left)
left_quad = self.shrink_quad_along_width(quads[left_idx], begin_width_ratio=left_ratio, end_width_ratio=1)
right_idx, right_ratio = get_cut_info(upper_edge_list, upper_len_right)
right_quad = self.shrink_quad_along_width(quads[right_idx], begin_width_ratio=0, end_width_ratio=right_ratio)
out_quad_list = []
if left_idx == right_idx:
out_quad_list.append([left_quad[0], right_quad[1], right_quad[2], left_quad[3]])
else:
out_quad_list.append(left_quad)
for idx in range(left_idx + 1, right_idx):
out_quad_list.append(quads[idx])
out_quad_list.append(right_quad)
return np.array(out_quad_list), list(range(left_idx, right_idx + 1))
def vector_angle(self, A, B):
"""
Calculate the angle between vector AB and x-axis positive direction.
"""
AB = np.array([B[1] - A[1], B[0] - A[0]])
return np.arctan2(*AB)
def theta_line_cross_point(self, theta, point):
"""
Calculate the line through given point and angle in ax + by + c =0 form.
"""
x, y = point
cos = np.cos(theta)
sin = np.sin(theta)
return [sin, -cos, cos * y - sin * x]
def line_cross_two_point(self, A, B):
"""
Calculate the line through given point A and B in ax + by + c =0 form.
"""
angle = self.vector_angle(A, B)
return self.theta_line_cross_point(angle, A)
def average_angle(self, poly):
"""
Calculate the average angle between left and right edge in given poly.
"""
p0, p1, p2, p3 = poly
angle30 = self.vector_angle(p3, p0)
angle21 = self.vector_angle(p2, p1)
return (angle30 + angle21) / 2
def line_cross_point(self, line1, line2):
"""
line1 and line2 in 0=ax+by+c form, compute the cross point of line1 and line2
"""
a1, b1, c1 = line1
a2, b2, c2 = line2
d = a1 * b2 - a2 * b1
if d == 0:
#print("line1", line1)
#print("line2", line2)
print('Cross point does not exist')
return np.array([0, 0], dtype=np.float32)
else:
x = (b1 * c2 - b2 * c1) / d
y = (a2 * c1 - a1 * c2) / d
return np.array([x, y], dtype=np.float32)
def quad2tcl(self, poly, ratio):
"""
Generate center line by poly clock-wise point. (4, 2)
"""
ratio_pair = np.array([[0.5 - ratio / 2], [0.5 + ratio / 2]], dtype=np.float32)
p0_3 = poly[0] + (poly[3] - poly[0]) * ratio_pair
p1_2 = poly[1] + (poly[2] - poly[1]) * ratio_pair
return np.array([p0_3[0], p1_2[0], p1_2[1], p0_3[1]])
def poly2tcl(self, poly, ratio):
"""
Generate center line by poly clock-wise point.
"""
ratio_pair = np.array([[0.5 - ratio / 2], [0.5 + ratio / 2]], dtype=np.float32)
tcl_poly = np.zeros_like(poly)
point_num = poly.shape[0]
for idx in range(point_num // 2):
point_pair = poly[idx] + (poly[point_num - 1 - idx] - poly[idx]) * ratio_pair
tcl_poly[idx] = point_pair[0]
tcl_poly[point_num - 1 - idx] = point_pair[1]
return tcl_poly
def gen_quad_tbo(self, quad, tcl_mask, tbo_map):
"""
Generate tbo_map for give quad.
"""
# upper and lower line function: ax + by + c = 0;
up_line = self.line_cross_two_point(quad[0], quad[1])
lower_line = self.line_cross_two_point(quad[3], quad[2])
quad_h = 0.5 * (np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[1] - quad[2]))
quad_w = 0.5 * (np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[2] - quad[3]))
# average angle of left and right line.
angle = self.average_angle(quad)
xy_in_poly = np.argwhere(tcl_mask == 1)
for y, x in xy_in_poly:
point = (x, y)
line = self.theta_line_cross_point(angle, point)
cross_point_upper = self.line_cross_point(up_line, line)
cross_point_lower = self.line_cross_point(lower_line, line)
##FIX, offset reverse
upper_offset_x, upper_offset_y = cross_point_upper - point
lower_offset_x, lower_offset_y = cross_point_lower - point
tbo_map[y, x, 0] = upper_offset_y
tbo_map[y, x, 1] = upper_offset_x
tbo_map[y, x, 2] = lower_offset_y
tbo_map[y, x, 3] = lower_offset_x
tbo_map[y, x, 4] = 1.0 / max(min(quad_h, quad_w), 1.0) * 2
return tbo_map
def poly2quads(self, poly):
"""
Split poly into quads.
"""
quad_list = []
point_num = poly.shape[0]
# point pair
point_pair_list = []
for idx in range(point_num // 2):
point_pair = [poly[idx], poly[point_num - 1 - idx]]
point_pair_list.append(point_pair)
quad_num = point_num // 2 - 1
for idx in range(quad_num):
# reshape and adjust to clock-wise
quad_list.append((np.array(point_pair_list)[[idx, idx + 1]]).reshape(4, 2)[[0, 2, 3, 1]])
return np.array(quad_list)
def rotate_im_poly(self, im, text_polys):
"""
rotate image with 90 / 180 / 270 degre
"""
im_w, im_h = im.shape[1], im.shape[0]
dst_im = im.copy()
dst_polys = []
rand_degree_ratio = np.random.rand()
rand_degree_cnt = 1
#if rand_degree_ratio > 0.333 and rand_degree_ratio < 0.666:
# rand_degree_cnt = 2
#elif rand_degree_ratio > 0.666:
if rand_degree_ratio > 0.5:
rand_degree_cnt = 3
for i in range(rand_degree_cnt):
dst_im = np.rot90(dst_im)
rot_degree = -90 * rand_degree_cnt
rot_angle = rot_degree * math.pi / 180.0
n_poly = text_polys.shape[0]
cx, cy = 0.5 * im_w, 0.5 * im_h
ncx, ncy = 0.5 * dst_im.shape[1], 0.5 * dst_im.shape[0]
for i in range(n_poly):
wordBB = text_polys[i]
poly = []
for j in range(4):#16->4
sx, sy = wordBB[j][0], wordBB[j][1]
dx = math.cos(rot_angle) * (sx - cx) - math.sin(rot_angle) * (sy - cy) + ncx
dy = math.sin(rot_angle) * (sx - cx) + math.cos(rot_angle) * (sy - cy) + ncy
poly.append([dx, dy])
dst_polys.append(poly)
return dst_im, np.array(dst_polys, dtype=np.float32)
def extract_polys(self, poly_txt_path):
"""
Read text_polys, txt_tags, txts from give txt file.
"""
text_polys, txt_tags, txts = [], [], []
with open(poly_txt_path) as f:
for line in f.readlines():
poly_str, txt = line.strip().split('\t')
poly = map(float, poly_str.split(','))
text_polys.append(np.array(poly, dtype=np.float32).reshape(-1, 2))
txts.append(txt)
if txt == '###':
txt_tags.append(True)
else:
txt_tags.append(False)
return np.array(map(np.array, text_polys)), \
np.array(txt_tags, dtype=np.bool), txts
def __call__(self, label_infor):
infor = self.convert_label_infor(label_infor)
im_path, text_polys, text_tags, text_strs = infor
im = cv2.imread(im_path)
if im is None:
return None
if text_polys.shape[0] == 0:
return None
# #add rotate cases
# if np.random.rand() < 0.5:
# im, text_polys = self.rotate_im_poly(im, text_polys)
h, w, _ = im.shape
# text_polys, text_tags = self.check_and_validate_polys(text_polys,
# text_tags, h, w)
text_polys, text_tags, hv_tags = self.check_and_validate_polys(text_polys, text_tags, (h, w))
if text_polys.shape[0] == 0:
return None
# # random scale this image
# rd_scale = np.random.choice(self.random_scale)
# im = cv2.resize(im, dsize=None, fx=rd_scale, fy=rd_scale)
# text_polys *= rd_scale
# if np.random.rand() < self.background_ratio:
# outs = self.crop_background_infor(im, text_polys, text_tags,
# text_strs)
# else:
# outs = self.crop_foreground_infor(im, text_polys, text_tags,
# text_strs)
# if outs is None:
# return None
# im, score_map, geo_map, training_mask = outs
# score_map = score_map[np.newaxis, ::4, ::4].astype(np.float32)
# geo_map = np.swapaxes(geo_map, 1, 2)
# geo_map = np.swapaxes(geo_map, 1, 0)
# geo_map = geo_map[:, ::4, ::4].astype(np.float32)
# training_mask = training_mask[np.newaxis, ::4, ::4]
# training_mask = training_mask.astype(np.float32)
# return im, score_map, geo_map, training_mask
#set aspect ratio and keep area fix
asp_scales = np.arange(1.0, 1.55, 0.1)
asp_scale = np.random.choice(asp_scales)
if np.random.rand() < 0.5:
asp_scale = 1.0 / asp_scale
asp_scale = math.sqrt(asp_scale)
asp_wx = asp_scale
asp_hy = 1.0 / asp_scale
im = cv2.resize(im, dsize=None, fx=asp_wx, fy=asp_hy)
text_polys[:, :, 0] *= asp_wx
text_polys[:, :, 1] *= asp_hy
h, w, _ = im.shape
if max(h, w) > 2048:
rd_scale = 2048.0 / max(h, w)
im = cv2.resize(im, dsize=None, fx=rd_scale, fy=rd_scale)
text_polys *= rd_scale
h, w, _ = im.shape
if min(h, w) < 16:
return None
#no background
im, text_polys, text_tags, hv_tags, text_strs = self.crop_area(im, \
text_polys, text_tags, hv_tags, text_strs, crop_background=False)
if text_polys.shape[0] == 0:
return None
#continue for all ignore case
if np.sum((text_tags * 1.0)) >= text_tags.size:
return None
new_h, new_w, _ = im.shape
if (new_h is None) or (new_w is None):
return None
#resize image
std_ratio = float(self.input_size) / max(new_w, new_h)
rand_scales = np.array([0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0, 1.0, 1.0, 1.0, 1.0])
rz_scale = std_ratio * np.random.choice(rand_scales)
im = cv2.resize(im, dsize=None, fx=rz_scale, fy=rz_scale)
text_polys[:, :, 0] *= rz_scale
text_polys[:, :, 1] *= rz_scale
#add gaussian blur
if np.random.rand() < 0.1 * 0.5:
ks = np.random.permutation(5)[0] + 1
ks = int(ks/2)*2 + 1
im = cv2.GaussianBlur(im, ksize=(ks, ks), sigmaX=0, sigmaY=0)
#add brighter
if np.random.rand() < 0.1 * 0.5:
im = im * (1.0 + np.random.rand() * 0.5)
im = np.clip(im, 0.0, 255.0)
#add darker
if np.random.rand() < 0.1 * 0.5:
im = im * (1.0 - np.random.rand() * 0.5)
im = np.clip(im, 0.0, 255.0)
# Padding the im to [input_size, input_size]
new_h, new_w, _ = im.shape
if min(new_w, new_h) < self.input_size * 0.5:
return None
im_padded = np.ones((self.input_size, self.input_size, 3), dtype=np.float32)
im_padded[:, :, 2] = 0.485 * 255
im_padded[:, :, 1] = 0.456 * 255
im_padded[:, :, 0] = 0.406 * 255
# Random the start position
del_h = self.input_size - new_h
del_w = self.input_size - new_w
sh, sw = 0, 0
if del_h > 1:
sh = int(np.random.rand() * del_h)
if del_w > 1:
sw = int(np.random.rand() * del_w)
# Padding
im_padded[sh: sh + new_h, sw: sw + new_w, :] = im.copy()
text_polys[:, :, 0] += sw
text_polys[:, :, 1] += sh
score_map, border_map, training_mask = self.generate_tcl_label((self.input_size, self.input_size),
text_polys, text_tags, 0.25)
# SAST head
tvo_map, tco_map = self.generate_tvo_and_tco((self.input_size, self.input_size), text_polys, text_tags, tcl_ratio=0.3, ds_ratio=0.25)
# print("test--------tvo_map shape:", tvo_map.shape)
im_padded[:, :, 2] -= 0.485 * 255
im_padded[:, :, 1] -= 0.456 * 255
im_padded[:, :, 0] -= 0.406 * 255
im_padded[:, :, 2] /= (255.0 * 0.229)
im_padded[:, :, 1] /= (255.0 * 0.224)
im_padded[:, :, 0] /= (255.0 * 0.225)
im_padded = im_padded.transpose((2, 0, 1))
# images.append(im_padded[::-1, :, :])
# tcl_maps.append(score_map[np.newaxis, :, :])
# border_maps.append(border_map.transpose((2, 0, 1)))
# training_masks.append(training_mask[np.newaxis, :, :])
# tvos.append(tvo_map.transpose((2, 0, 1)))
# tcos.append(tco_map.transpose((2, 0, 1)))
# # After a batch should begin
# if len(images) == batch_size:
# yield np.array(images, dtype=np.float32), \
# np.array(tcl_maps, dtype=np.float32), \
# np.array(tvos, dtype=np.float32), \
# np.array(tcos, dtype=np.float32), \
# np.array(border_maps, dtype=np.float32), \
# np.array(training_masks, dtype=np.float32), \
# images, tcl_maps, border_maps, training_masks = [], [], [], []
# tvos, tcos = [], []
# return im_padded, score_map, border_map, training_mask, tvo_map, tco_map
return im_padded[::-1, :, :], score_map[np.newaxis, :, :], border_map.transpose((2, 0, 1)), training_mask[np.newaxis, :, :], tvo_map.transpose((2, 0, 1)), tco_map.transpose((2, 0, 1))
class SASTProcessTest(object):
"""
SAST process function for test
"""
def __init__(self, params):
super(SASTProcessTest, self).__init__()
if 'max_side_len' in params:
self.max_side_len = params['max_side_len']
else:
self.max_side_len = 2400
# def resize_image(self, im):
# """
# resize image to a size multiple of 32 which is required by the network
# :param im: the resized image
# :param max_side_len: limit of max image size to avoid out of memory in gpu
# :return: the resized image and the resize ratio
# """
# max_side_len = self.max_side_len
# h, w, _ = im.shape
# resize_w = w
# resize_h = h
# # limit the max side
# if max(resize_h, resize_w) > max_side_len:
# if resize_h > resize_w:
# ratio = float(max_side_len) / resize_h
# else:
# ratio = float(max_side_len) / resize_w
# else:
# ratio = 1.
# resize_h = int(resize_h * ratio)
# resize_w = int(resize_w * ratio)
# if resize_h % 32 == 0:
# resize_h = resize_h
# elif resize_h // 32 <= 1:
# resize_h = 32
# else:
# resize_h = (resize_h // 32 - 1) * 32
# if resize_w % 32 == 0:
# resize_w = resize_w
# elif resize_w // 32 <= 1:
# resize_w = 32
# else:
# resize_w = (resize_w // 32 - 1) * 32
# im = cv2.resize(im, (int(resize_w), int(resize_h)))
# ratio_h = resize_h / float(h)
# ratio_w = resize_w / float(w)
# return im, (ratio_h, ratio_w)
def resize_image(self, im):
"""
resize image to a size multiple of max_stride which is required by the network
:param im: the resized image
:param max_side_len: limit of max image size to avoid out of memory in gpu
:return: the resized image and the resize ratio
"""
h, w, _ = im.shape
resize_w = w
resize_h = h
# Fix the longer side
if resize_h > resize_w:
ratio = float(self.max_side_len) / resize_h
else:
ratio = float(self.max_side_len) / resize_w
resize_h = int(resize_h * ratio)
resize_w = int(resize_w * ratio)
max_stride = 128
resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
im = cv2.resize(im, (int(resize_w), int(resize_h)))
ratio_h = resize_h / float(h)
ratio_w = resize_w / float(w)
return im, (ratio_h, ratio_w)
def __call__(self, im):
src_h, src_w, _ = im.shape
im, (ratio_h, ratio_w) = self.resize_image(im)
img_mean = [0.485, 0.456, 0.406]
img_std = [0.229, 0.224, 0.225]
im = im[:, :, ::-1].astype(np.float32)
im = im / 255
im -= img_mean
im /= img_std
im = im.transpose((2, 0, 1))
im = im[np.newaxis, :]
return [im, (ratio_h, ratio_w, src_h, src_w)]

18
ppocr/modeling/architectures/det_model.py Executable file → Normal file
View File

@ -97,6 +97,24 @@ class DetModel(object):
'shrink_mask':shrink_mask,\
'threshold_map':threshold_map,\
'threshold_mask':threshold_mask}
elif self.algorithm == "SAST":
input_score = fluid.layers.data(
name='score', shape=[1, 128, 128], dtype='float32')
input_border = fluid.layers.data(
name='border', shape=[5, 128, 128], dtype='float32')
input_mask = fluid.layers.data(
name='mask', shape=[1, 128, 128], dtype='float32')
input_tvo = fluid.layers.data(
# name='tvo', shape=[5, 128, 128], dtype='float32')
name='tvo', shape=[9, 128, 128], dtype='float32')
input_tco = fluid.layers.data(
name='tco', shape=[3, 128, 128], dtype='float32')
feed_list = [image, input_score, input_border, input_mask, input_tvo, input_tco]
labels = {'input_score': input_score,\
'input_border': input_border,\
'input_mask': input_mask,\
'input_tvo': input_tvo,\
'input_tco': input_tco}
loader = fluid.io.DataLoader.from_generator(
feed_list=feed_list,
capacity=64,

View File

@ -0,0 +1,274 @@
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
__all__ = ["ResNet"]
class ResNet(object):
def __init__(self, params):
"""
the Resnet backbone network for detection module.
Args:
params(dict): the super parameters for network build
"""
self.layers = params['layers']
supported_layers = [18, 34, 50, 101, 152]
assert self.layers in supported_layers, \
"supported layers are {} but input layer is {}".format(supported_layers, self.layers)
self.is_3x3 = True
def __call__(self, input):
layers = self.layers
is_3x3 = self.is_3x3
# if layers == 18:
# depth = [2, 2, 2, 2]
# elif layers == 34 or layers == 50:
# depth = [3, 4, 6, 3]
# elif layers == 101:
# depth = [3, 4, 23, 3]
# elif layers == 152:
# depth = [3, 8, 36, 3]
# elif layers == 200:
# depth = [3, 12, 48, 3]
# num_filters = [64, 128, 256, 512]
# outs = []
if layers == 18:
depth = [2, 2, 2, 2]#, 3, 3]
elif layers == 34 or layers == 50:
#depth = [3, 4, 6, 3]#, 3, 3]
depth = [3, 4, 6, 3, 3]#, 3]
elif layers == 101:
depth = [3, 4, 23, 3]#, 3, 3]
elif layers == 152:
depth = [3, 8, 36, 3]#, 3, 3]
num_filters = [64, 128, 256, 512, 512]#, 512]
blocks = {}
idx = 'block_0'
blocks[idx] = input
if is_3x3 == False:
conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=7,
stride=2,
act='relu')
else:
conv = self.conv_bn_layer(
input=input,
num_filters=32,
filter_size=3,
stride=2,
act='relu',
name='conv1_1')
conv = self.conv_bn_layer(
input=conv,
num_filters=32,
filter_size=3,
stride=1,
act='relu',
name='conv1_2')
conv = self.conv_bn_layer(
input=conv,
num_filters=64,
filter_size=3,
stride=1,
act='relu',
name='conv1_3')
idx = 'block_1'
blocks[idx] = conv
conv = fluid.layers.pool2d(
input=conv,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
if layers >= 50:
for block in range(len(depth)):
for i in range(depth[block]):
if layers in [101, 152, 200] and block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
conv = self.bottleneck_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
if_first=block == i == 0,
name=conv_name)
# outs.append(conv)
idx = 'block_' + str(block + 2)
blocks[idx] = conv
else:
for block in range(len(depth)):
for i in range(depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)
conv = self.basic_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
if_first=block == i == 0,
name=conv_name)
# outs.append(conv)
idx = 'block_' + str(block + 2)
blocks[idx] = conv
# return outs
return blocks
def conv_bn_layer(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
return fluid.layers.batch_norm(
input=conv,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def conv_bn_layer_new(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
pool = fluid.layers.pool2d(
input=input,
pool_size=2,
pool_stride=2,
pool_padding=0,
pool_type='avg',
ceil_mode=True)
conv = fluid.layers.conv2d(
input=pool,
num_filters=num_filters,
filter_size=filter_size,
stride=1,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
return fluid.layers.batch_norm(
input=conv,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def shortcut(self, input, ch_out, stride, name, if_first=False):
ch_in = input.shape[1]
if ch_in != ch_out or stride != 1:
if if_first:
return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
else:
return self.conv_bn_layer_new(
input, ch_out, 1, stride, name=name)
elif if_first:
return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
else:
return input
def bottleneck_block(self, input, num_filters, stride, name, if_first):
conv0 = self.conv_bn_layer(
input=input,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name + "_branch2a")
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
stride=stride,
act='relu',
name=name + "_branch2b")
conv2 = self.conv_bn_layer(
input=conv1,
num_filters=num_filters * 4,
filter_size=1,
act=None,
name=name + "_branch2c")
short = self.shortcut(
input,
num_filters * 4,
stride,
if_first=if_first,
name=name + "_branch1")
return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
def basic_block(self, input, num_filters, stride, name, if_first):
conv0 = self.conv_bn_layer(
input=input,
num_filters=num_filters,
filter_size=3,
act='relu',
stride=stride,
name=name + "_branch2a")
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
act=None,
name=name + "_branch2b")
short = self.shortcut(
input,
num_filters,
stride,
if_first=if_first,
name=name + "_branch1")
return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')

View File

@ -0,0 +1,228 @@
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.fluid as fluid
from ..common_functions import conv_bn_layer, deconv_bn_layer
from collections import OrderedDict
class SASTHead(object):
"""
SAST:
see arxiv: https://
args:
params(dict): the super parameters for network build
"""
def __init__(self, params):
self.model_name = params['model_name']
self.with_cab = params['with_cab']
def FPN_Up_Fusion(self, blocks):
"""
blocks{}: contain block_2, block_3, block_4, block_5, block_6, block_7 with
1/4, 1/8, 1/16, 1/32, 1/64, 1/128 resolution.
"""
f = [blocks['block_6'], blocks['block_5'], blocks['block_4'], blocks['block_3'], blocks['block_2']]
num_outputs = [256, 256, 192, 192, 128]
g = [None, None, None, None, None]
h = [None, None, None, None, None]
for i in range(5):
h[i] = conv_bn_layer(input=f[i], num_filters=num_outputs[i],
filter_size=1, stride=1, act=None, name='fpn_up_h'+str(i))
for i in range(4):
if i == 0:
g[i] = deconv_bn_layer(input=h[i], num_filters=num_outputs[i + 1], act=None, name='fpn_up_g0')
print("g[{}] shape: {}".format(i, g[i].shape))
else:
g[i] = fluid.layers.elementwise_add(x=g[i - 1], y=h[i])
g[i] = fluid.layers.relu(g[i])
#g[i] = conv_bn_layer(input=g[i], num_filters=num_outputs[i],
# filter_size=1, stride=1, act='relu')
g[i] = conv_bn_layer(input=g[i], num_filters=num_outputs[i],
filter_size=3, stride=1, act='relu', name='fpn_up_g%d_1'%i)
g[i] = deconv_bn_layer(input=g[i], num_filters=num_outputs[i + 1], act=None, name='fpn_up_g%d_2'%i)
print("g[{}] shape: {}".format(i, g[i].shape))
g[4] = fluid.layers.elementwise_add(x=g[3], y=h[4])
g[4] = fluid.layers.relu(g[4])
g[4] = conv_bn_layer(input=g[4], num_filters=num_outputs[4],
filter_size=3, stride=1, act='relu', name='fpn_up_fusion_1')
g[4] = conv_bn_layer(input=g[4], num_filters=num_outputs[4],
filter_size=1, stride=1, act=None, name='fpn_up_fusion_2')
return g[4]
def FPN_Down_Fusion(self, blocks):
"""
blocks{}: contain block_2, block_3, block_4, block_5, block_6, block_7 with
1/4, 1/8, 1/16, 1/32, 1/64, 1/128 resolution.
"""
f = [blocks['block_0'], blocks['block_1'], blocks['block_2']]
num_outputs = [32, 64, 128]
g = [None, None, None]
h = [None, None, None]
for i in range(3):
h[i] = conv_bn_layer(input=f[i], num_filters=num_outputs[i],
filter_size=3, stride=1, act=None, name='fpn_down_h'+str(i))
for i in range(2):
if i == 0:
g[i] = conv_bn_layer(input=h[i], num_filters=num_outputs[i+1], filter_size=3, stride=2, act=None, name='fpn_down_g0')
else:
g[i] = fluid.layers.elementwise_add(x=g[i - 1], y=h[i])
g[i] = fluid.layers.relu(g[i])
g[i] = conv_bn_layer(input=g[i], num_filters=num_outputs[i], filter_size=3, stride=1, act='relu', name='fpn_down_g%d_1'%i)
g[i] = conv_bn_layer(input=g[i], num_filters=num_outputs[i+1], filter_size=3, stride=2, act=None, name='fpn_down_g%d_2'%i)
print("g[{}] shape: {}".format(i, g[i].shape))
g[2] = fluid.layers.elementwise_add(x=g[1], y=h[2])
g[2] = fluid.layers.relu(g[2])
g[2] = conv_bn_layer(input=g[2], num_filters=num_outputs[2],
filter_size=3, stride=1, act='relu', name='fpn_down_fusion_1')
g[2] = conv_bn_layer(input=g[2], num_filters=num_outputs[2],
filter_size=1, stride=1, act=None, name='fpn_down_fusion_2')
return g[2]
def SAST_Header1(self, f_common):
"""Detector header."""
#f_score
f_score = conv_bn_layer(input=f_common, num_filters=64, filter_size=1, stride=1, act='relu', name='f_score1')
f_score = conv_bn_layer(input=f_score, num_filters=64, filter_size=3, stride=1, act='relu', name='f_score2')
f_score = conv_bn_layer(input=f_score, num_filters=128, filter_size=1, stride=1, act='relu', name='f_score3')
f_score = conv_bn_layer(input=f_score, num_filters=1, filter_size=3, stride=1, name='f_score4')
f_score = fluid.layers.sigmoid(f_score)
print("f_score shape: {}".format(f_score.shape))
#f_boder
f_border = conv_bn_layer(input=f_common, num_filters=64, filter_size=1, stride=1, act='relu', name='f_border1')
f_border = conv_bn_layer(input=f_border, num_filters=64, filter_size=3, stride=1, act='relu', name='f_border2')
f_border = conv_bn_layer(input=f_border, num_filters=128, filter_size=1, stride=1, act='relu', name='f_border3')
f_border = conv_bn_layer(input=f_border, num_filters=4, filter_size=3, stride=1, name='f_border4')
print("f_border shape: {}".format(f_border.shape))
return f_score, f_border
def SAST_Header2(self, f_common):
"""Detector header."""
#f_tvo
f_tvo = conv_bn_layer(input=f_common, num_filters=64, filter_size=1, stride=1, act='relu', name='f_tvo1')
f_tvo = conv_bn_layer(input=f_tvo, num_filters=64, filter_size=3, stride=1, act='relu', name='f_tvo2')
f_tvo = conv_bn_layer(input=f_tvo, num_filters=128, filter_size=1, stride=1, act='relu', name='f_tvo3')
f_tvo = conv_bn_layer(input=f_tvo, num_filters=8, filter_size=3, stride=1, name='f_tvo4')
print("f_tvo shape: {}".format(f_tvo.shape))
#f_tco
f_tco = conv_bn_layer(input=f_common, num_filters=64, filter_size=1, stride=1, act='relu', name='f_tco1')
f_tco = conv_bn_layer(input=f_tco, num_filters=64, filter_size=3, stride=1, act='relu', name='f_tco2')
f_tco = conv_bn_layer(input=f_tco, num_filters=128, filter_size=1, stride=1, act='relu', name='f_tco3')
f_tco = conv_bn_layer(input=f_tco, num_filters=2, filter_size=3, stride=1, name='f_tco4')
print("f_tco shape: {}".format(f_tco.shape))
return f_tvo, f_tco
def cross_attention(self, f_common):
"""
"""
f_shape = fluid.layers.shape(f_common)
f_theta = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, act='relu', name='f_theta')
f_phi = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, act='relu', name='f_phi')
f_g = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, act='relu', name='f_g')
### horizon
fh_theta = f_theta
fh_phi = f_phi
fh_g = f_g
#flatten
fh_theta = fluid.layers.transpose(fh_theta, [0, 2, 3, 1])
fh_theta = fluid.layers.reshape(fh_theta, [f_shape[0] * f_shape[2], f_shape[3], 128])
fh_phi = fluid.layers.transpose(fh_phi, [0, 2, 3, 1])
fh_phi = fluid.layers.reshape(fh_phi, [f_shape[0] * f_shape[2], f_shape[3], 128])
fh_g = fluid.layers.transpose(fh_g, [0, 2, 3, 1])
fh_g = fluid.layers.reshape(fh_g, [f_shape[0] * f_shape[2], f_shape[3], 128])
#correlation
fh_attn = fluid.layers.matmul(fh_theta, fluid.layers.transpose(fh_phi, [0, 2, 1]))
#scale
fh_attn = fh_attn / (128 ** 0.5)
fh_attn = fluid.layers.softmax(fh_attn)
#weighted sum
fh_weight = fluid.layers.matmul(fh_attn, fh_g)
fh_weight = fluid.layers.reshape(fh_weight, [f_shape[0], f_shape[2], f_shape[3], 128])
print("fh_weight: {}".format(fh_weight.shape))
fh_weight = fluid.layers.transpose(fh_weight, [0, 3, 1, 2])
fh_weight = conv_bn_layer(input=fh_weight, num_filters=128, filter_size=1, stride=1, name='fh_weight')
#short cut
fh_sc = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, name='fh_sc')
f_h = fluid.layers.relu(fh_weight + fh_sc)
######
#vertical
fv_theta = fluid.layers.transpose(f_theta, [0, 1, 3, 2])
fv_phi = fluid.layers.transpose(f_phi, [0, 1, 3, 2])
fv_g = fluid.layers.transpose(f_g, [0, 1, 3, 2])
#flatten
fv_theta = fluid.layers.transpose(fv_theta, [0, 2, 3, 1])
fv_theta = fluid.layers.reshape(fv_theta, [f_shape[0] * f_shape[3], f_shape[2], 128])
fv_phi = fluid.layers.transpose(fv_phi, [0, 2, 3, 1])
fv_phi = fluid.layers.reshape(fv_phi, [f_shape[0] * f_shape[3], f_shape[2], 128])
fv_g = fluid.layers.transpose(fv_g, [0, 2, 3, 1])
fv_g = fluid.layers.reshape(fv_g, [f_shape[0] * f_shape[3], f_shape[2], 128])
#correlation
fv_attn = fluid.layers.matmul(fv_theta, fluid.layers.transpose(fv_phi, [0, 2, 1]))
#scale
fv_attn = fv_attn / (128 ** 0.5)
fv_attn = fluid.layers.softmax(fv_attn)
#weighted sum
fv_weight = fluid.layers.matmul(fv_attn, fv_g)
fv_weight = fluid.layers.reshape(fv_weight, [f_shape[0], f_shape[3], f_shape[2], 128])
print("fv_weight: {}".format(fv_weight.shape))
fv_weight = fluid.layers.transpose(fv_weight, [0, 3, 2, 1])
fv_weight = conv_bn_layer(input=fv_weight, num_filters=128, filter_size=1, stride=1, name='fv_weight')
#short cut
fv_sc = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, name='fv_sc')
f_v = fluid.layers.relu(fv_weight + fv_sc)
######
f_attn = fluid.layers.concat([f_h, f_v], axis=1)
f_attn = conv_bn_layer(input=f_attn, num_filters=128, filter_size=1, stride=1, act='relu', name='f_attn')
return f_attn
def __call__(self, blocks, with_cab=False):
for k, v in blocks.items():
print(k, v.shape)
#down fpn
f_down = self.FPN_Down_Fusion(blocks)
print("f_down shape: {}".format(f_down.shape))
#up fpn
f_up = self.FPN_Up_Fusion(blocks)
print("f_up shape: {}".format(f_up.shape))
#fusion
f_common = fluid.layers.elementwise_add(x=f_down, y=f_up)
f_common = fluid.layers.relu(f_common)
print("f_common: {}".format(f_common.shape))
if self.with_cab:
print('enhence f_common with CAB.')
f_common = self.cross_attention(f_common)
f_score, f_border= self.SAST_Header1(f_common)
f_tvo, f_tco = self.SAST_Header2(f_common)
predicts = OrderedDict()
predicts['f_score'] = f_score
predicts['f_border'] = f_border
predicts['f_tvo'] = f_tvo
predicts['f_tco'] = f_tco
return predicts

View File

@ -0,0 +1,115 @@
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.fluid as fluid
class SASTLoss(object):
"""
SAST Loss function
"""
def __init__(self, params=None):
super(SASTLoss, self).__init__()
def __call__(self, predicts, labels):
"""
tcl_pos: N x 128 x 3
tcl_mask: N x 128 x 1
tcl_label: N x X list or LoDTensor
"""
f_score = predicts['f_score']
f_border = predicts['f_border']
f_tvo = predicts['f_tvo']
f_tco = predicts['f_tco']
l_score = labels['input_score']
l_border = labels['input_border']
l_mask = labels['input_mask']
l_tvo = labels['input_tvo']
l_tco = labels['input_tco']
#score_loss
intersection = fluid.layers.reduce_sum(f_score * l_score * l_mask)
union = fluid.layers.reduce_sum(f_score * l_mask) + fluid.layers.reduce_sum(l_score * l_mask)
score_loss = 1.0 - 2 * intersection / (union + 1e-5)
#border loss
l_border_split, l_border_norm = fluid.layers.split(l_border, num_or_sections=[4, 1], dim=1)
f_border_split = f_border
l_border_norm_split = fluid.layers.expand(x=l_border_norm, expand_times=[1, 4, 1, 1])
l_border_score = fluid.layers.expand(x=l_score, expand_times=[1, 4, 1, 1])
l_border_mask = fluid.layers.expand(x=l_mask, expand_times=[1, 4, 1, 1])
border_diff = l_border_split - f_border_split
abs_border_diff = fluid.layers.abs(border_diff)
border_sign = abs_border_diff < 1.0
border_sign = fluid.layers.cast(border_sign, dtype='float32')
border_sign.stop_gradient = True
border_in_loss = 0.5 * abs_border_diff * abs_border_diff * border_sign + \
(abs_border_diff - 0.5) * (1.0 - border_sign)
border_out_loss = l_border_norm_split * border_in_loss
border_loss = fluid.layers.reduce_sum(border_out_loss * l_border_score * l_border_mask) / \
(fluid.layers.reduce_sum(l_border_score * l_border_mask) + 1e-5)
#tvo_loss
l_tvo_split, l_tvo_norm = fluid.layers.split(l_tvo, num_or_sections=[8, 1], dim=1)
f_tvo_split = f_tvo
l_tvo_norm_split = fluid.layers.expand(x=l_tvo_norm, expand_times=[1, 8, 1, 1])
l_tvo_score = fluid.layers.expand(x=l_score, expand_times=[1, 8, 1, 1])
l_tvo_mask = fluid.layers.expand(x=l_mask, expand_times=[1, 8, 1, 1])
#
tvo_geo_diff = l_tvo_split - f_tvo_split
abs_tvo_geo_diff = fluid.layers.abs(tvo_geo_diff)
tvo_sign = abs_tvo_geo_diff < 1.0
tvo_sign = fluid.layers.cast(tvo_sign, dtype='float32')
tvo_sign.stop_gradient = True
tvo_in_loss = 0.5 * abs_tvo_geo_diff * abs_tvo_geo_diff * tvo_sign + \
(abs_tvo_geo_diff - 0.5) * (1.0 - tvo_sign)
tvo_out_loss = l_tvo_norm_split * tvo_in_loss
tvo_loss = fluid.layers.reduce_sum(tvo_out_loss * l_tvo_score * l_tvo_mask) / \
(fluid.layers.reduce_sum(l_tvo_score * l_tvo_mask) + 1e-5)
#tco_loss
l_tco_split, l_tco_norm = fluid.layers.split(l_tco, num_or_sections=[2, 1], dim=1)
f_tco_split = f_tco
l_tco_norm_split = fluid.layers.expand(x=l_tco_norm, expand_times=[1, 2, 1, 1])
l_tco_score = fluid.layers.expand(x=l_score, expand_times=[1, 2, 1, 1])
l_tco_mask = fluid.layers.expand(x=l_mask, expand_times=[1, 2, 1, 1])
#
tco_geo_diff = l_tco_split - f_tco_split
abs_tco_geo_diff = fluid.layers.abs(tco_geo_diff)
tco_sign = abs_tco_geo_diff < 1.0
tco_sign = fluid.layers.cast(tco_sign, dtype='float32')
tco_sign.stop_gradient = True
tco_in_loss = 0.5 * abs_tco_geo_diff * abs_tco_geo_diff * tco_sign + \
(abs_tco_geo_diff - 0.5) * (1.0 - tco_sign)
tco_out_loss = l_tco_norm_split * tco_in_loss
tco_loss = fluid.layers.reduce_sum(tco_out_loss * l_tco_score * l_tco_mask) / \
(fluid.layers.reduce_sum(l_tco_score * l_tco_mask) + 1e-5)
# total loss
tvo_lw, tco_lw = 1.5, 1.5
score_lw, border_lw = 1.0, 1.0
total_loss = score_loss * score_lw + border_loss * border_lw + \
tvo_loss * tvo_lw + tco_loss * tco_lw
losses = {'total_loss':total_loss, "score_loss":score_loss,\
"border_loss":border_loss, 'tvo_loss':tvo_loss, 'tco_loss':tco_loss}
return losses

58
ppocr/optimizer.py Executable file → Normal file
View File

@ -36,17 +36,28 @@ def AdamDecay(params, parameter_list=None):
l2_decay = params.get("l2_decay", 0.0)
if 'decay' in params:
supported_decay_mode = ["cosine_decay", "piecewise_decay"]
params = params['decay']
decay_mode = params['function']
assert decay_mode in supported_decay_mode, "Supported decay mode is {}, but got {}".format(
supported_decay_mode, decay_mode)
if decay_mode == "cosine_decay":
step_each_epoch = params['step_each_epoch']
total_epoch = params['total_epoch']
if decay_mode == "cosine_decay":
base_lr = fluid.layers.cosine_decay(
learning_rate=base_lr,
step_each_epoch=step_each_epoch,
epochs=total_epoch)
else:
logger.info("Only support Cosine decay currently")
elif decay_mode == "piecewise_decay":
boundaries = params["boundaries"]
decay_rate = params["decay_rate"]
values = [
base_lr * decay_rate**idx
for idx in range(len(boundaries) + 1)
]
base_lr = fluid.layers.piecewise_decay(boundaries, values)
optimizer = fluid.optimizer.Adam(
learning_rate=base_lr,
beta1=beta1,
@ -54,3 +65,44 @@ def AdamDecay(params, parameter_list=None):
regularization=L2Decay(regularization_coeff=l2_decay),
parameter_list=parameter_list)
return optimizer
def RMSProp(params, parameter_list=None):
"""
define optimizer function
args:
params(dict): the super parameters
parameter_list (list): list of Variable names to update to minimize loss
return:
"""
base_lr = params.get("base_lr", 0.001)
l2_decay = params.get("l2_decay", 0.00005)
if 'decay' in params:
supported_decay_mode = ["cosine_decay", "piecewise_decay"]
params = params['decay']
decay_mode = params['function']
assert decay_mode in supported_decay_mode, "Supported decay mode is {}, but got {}".format(
supported_decay_mode, decay_mode)
if decay_mode == "cosine_decay":
step_each_epoch = params['step_each_epoch']
total_epoch = params['total_epoch']
base_lr = fluid.layers.cosine_decay(
learning_rate=base_lr,
step_each_epoch=step_each_epoch,
epochs=total_epoch)
elif decay_mode == "piecewise_decay":
boundaries = params["boundaries"]
decay_rate = params["decay_rate"]
values = [
base_lr * decay_rate**idx
for idx in range(len(boundaries) + 1)
]
base_lr = fluid.layers.piecewise_decay(boundaries, values)
optimizer = fluid.optimizer.RMSProp(
learning_rate=base_lr,
regularization=fluid.regularizer.L2Decay(regularization_coeff=l2_decay))
return optimizer

View File

@ -0,0 +1,289 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '..'))
import numpy as np
from .locality_aware_nms import nms_locality
# import lanms
import cv2
import time
class SASTPostProcess(object):
"""
The post process for SAST.
"""
def __init__(self, params):
self.score_thresh = params.get('score_thresh', 0.5)
self.nms_thresh = params.get('nms_thresh', 0.2)
self.sample_pts_num = params.get('sample_pts_num', 2)
self.shrink_ratio_of_width = params.get('shrink_ratio_of_width', 0.3)
self.expand_scale = params.get('expand_scale', 1.0)
self.tcl_map_thresh = 0.5
# c++ la-nms is faster, but only support python 3.5
self.is_python35 = False
if sys.version_info.major == 3 and sys.version_info.minor == 5:
self.is_python35 = True
def point_pair2poly(self, point_pair_list):
"""
Transfer vertical point_pairs into poly point in clockwise.
"""
# constract poly
point_num = len(point_pair_list) * 2
point_list = [0] * point_num
for idx, point_pair in enumerate(point_pair_list):
point_list[idx] = point_pair[0]
point_list[point_num - 1 - idx] = point_pair[1]
return np.array(point_list).reshape(-1, 2)
def shrink_quad_along_width(self, quad, begin_width_ratio=0., end_width_ratio=1.):
"""
Generate shrink_quad_along_width.
"""
ratio_pair = np.array([[begin_width_ratio], [end_width_ratio]], dtype=np.float32)
p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair
p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair
return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]])
def expand_poly_along_width(self, poly, shrink_ratio_of_width=0.3):
"""
expand poly along width.
"""
point_num = poly.shape[0]
left_quad = np.array([poly[0], poly[1], poly[-2], poly[-1]], dtype=np.float32)
left_ratio = -shrink_ratio_of_width * np.linalg.norm(left_quad[0] - left_quad[3]) / \
(np.linalg.norm(left_quad[0] - left_quad[1]) + 1e-6)
left_quad_expand = self.shrink_quad_along_width(left_quad, left_ratio, 1.0)
right_quad = np.array([poly[point_num // 2 - 2], poly[point_num // 2 - 1],
poly[point_num // 2], poly[point_num // 2 + 1]], dtype=np.float32)
right_ratio = 1.0 + \
shrink_ratio_of_width * np.linalg.norm(right_quad[0] - right_quad[3]) / \
(np.linalg.norm(right_quad[0] - right_quad[1]) + 1e-6)
right_quad_expand = self.shrink_quad_along_width(right_quad, 0.0, right_ratio)
poly[0] = left_quad_expand[0]
poly[-1] = left_quad_expand[-1]
poly[point_num // 2 - 1] = right_quad_expand[1]
poly[point_num // 2] = right_quad_expand[2]
return poly
def restore_quad(self, tcl_map, tcl_map_thresh, tvo_map):
"""Restore quad."""
xy_text = np.argwhere(tcl_map[:, :, 0] > tcl_map_thresh)
xy_text = xy_text[:, ::-1] # (n, 2)
# Sort the text boxes via the y axis
xy_text = xy_text[np.argsort(xy_text[:, 1])]
scores = tcl_map[xy_text[:, 1], xy_text[:, 0], 0]
scores = scores[:, np.newaxis]
# Restore
point_num = int(tvo_map.shape[-1] / 2)
assert point_num == 4
tvo_map = tvo_map[xy_text[:, 1], xy_text[:, 0], :]
xy_text_tile = np.tile(xy_text, (1, point_num)) # (n, point_num * 2)
quads = xy_text_tile - tvo_map
return scores, quads, xy_text
def quad_area(self, quad):
"""
compute area of a quad.
"""
edge = [
(quad[1][0] - quad[0][0]) * (quad[1][1] + quad[0][1]),
(quad[2][0] - quad[1][0]) * (quad[2][1] + quad[1][1]),
(quad[3][0] - quad[2][0]) * (quad[3][1] + quad[2][1]),
(quad[0][0] - quad[3][0]) * (quad[0][1] + quad[3][1])
]
return np.sum(edge) / 2.
def nms(self, dets):
if self.is_python35:
import lanms
dets = lanms.merge_quadrangle_n9(dets, self.nms_thresh)
else:
dets = nms_locality(dets, self.nms_thresh)
return dets
def cluster_by_quads_tco(self, tcl_map, tcl_map_thresh, quads, tco_map):
"""
Cluster pixels in tcl_map based on quads.
"""
instance_count = quads.shape[0] + 1 # contain background
instance_label_map = np.zeros(tcl_map.shape[:2], dtype=np.int32)
if instance_count == 1:
return instance_count, instance_label_map
# predict text center
xy_text = np.argwhere(tcl_map[:, :, 0] > tcl_map_thresh)
n = xy_text.shape[0]
xy_text = xy_text[:, ::-1] # (n, 2)
tco = tco_map[xy_text[:, 1], xy_text[:, 0], :] # (n, 2)
pred_tc = xy_text - tco
# get gt text center
m = quads.shape[0]
gt_tc = np.mean(quads, axis=1) # (m, 2)
pred_tc_tile = np.tile(pred_tc[:, np.newaxis, :], (1, m, 1)) # (n, m, 2)
gt_tc_tile = np.tile(gt_tc[np.newaxis, :, :], (n, 1, 1)) # (n, m, 2)
dist_mat = np.linalg.norm(pred_tc_tile - gt_tc_tile, axis=2) # (n, m)
xy_text_assign = np.argmin(dist_mat, axis=1) + 1 # (n,)
instance_label_map[xy_text[:, 1], xy_text[:, 0]] = xy_text_assign
return instance_count, instance_label_map
def estimate_sample_pts_num(self, quad, xy_text):
"""
Estimate sample points number.
"""
eh = (np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[1] - quad[2])) / 2.0
ew = (np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[2] - quad[3])) / 2.0
dense_sample_pts_num = max(2, int(ew))
dense_xy_center_line = xy_text[np.linspace(0, xy_text.shape[0] - 1, dense_sample_pts_num,
endpoint=True, dtype=np.float32).astype(np.int32)]
dense_xy_center_line_diff = dense_xy_center_line[1:] - dense_xy_center_line[:-1]
estimate_arc_len = np.sum(np.linalg.norm(dense_xy_center_line_diff, axis=1))
sample_pts_num = max(2, int(estimate_arc_len / eh))
return sample_pts_num
def detect_sast(self, tcl_map, tvo_map, tbo_map, tco_map, ratio_w, ratio_h, src_w, src_h,
shrink_ratio_of_width=0.3, tcl_map_thresh=0.5, offset_expand=1.0, out_strid=4.0):
"""
first resize the tcl_map, tvo_map and tbo_map to the input_size, then restore the polys
"""
# restore quad
scores, quads, xy_text = self.restore_quad(tcl_map, tcl_map_thresh, tvo_map)
dets = np.hstack((quads, scores)).astype(np.float32, copy=False)
dets = self.nms(dets)
if dets.shape[0] == 0:
return []
quads = dets[:, :-1].reshape(-1, 4, 2)
# Compute quad area
quad_areas = []
for quad in quads:
quad_areas.append(-self.quad_area(quad))
# instance segmentation
# instance_count, instance_label_map = cv2.connectedComponents(tcl_map.astype(np.uint8), connectivity=8)
instance_count, instance_label_map = self.cluster_by_quads_tco(tcl_map, tcl_map_thresh, quads, tco_map)
# restore single poly with tcl instance.
poly_list = []
for instance_idx in range(1, instance_count):
xy_text = np.argwhere(instance_label_map == instance_idx)[:, ::-1]
quad = quads[instance_idx - 1]
q_area = quad_areas[instance_idx - 1]
if q_area < 5:
continue
#
len1 = float(np.linalg.norm(quad[0] -quad[1]))
len2 = float(np.linalg.norm(quad[1] -quad[2]))
min_len = min(len1, len2)
if min_len < 3:
continue
# filter small CC
if xy_text.shape[0] <= 0:
continue
# filter low confidence instance
xy_text_scores = tcl_map[xy_text[:, 1], xy_text[:, 0], 0]
if np.sum(xy_text_scores) / quad_areas[instance_idx - 1] < 0.1:
# if np.sum(xy_text_scores) / quad_areas[instance_idx - 1] < 0.05:
continue
# sort xy_text
left_center_pt = np.array([[(quad[0, 0] + quad[-1, 0]) / 2.0,
(quad[0, 1] + quad[-1, 1]) / 2.0]]) # (1, 2)
right_center_pt = np.array([[(quad[1, 0] + quad[2, 0]) / 2.0,
(quad[1, 1] + quad[2, 1]) / 2.0]]) # (1, 2)
proj_unit_vec = (right_center_pt - left_center_pt) / \
(np.linalg.norm(right_center_pt - left_center_pt) + 1e-6)
proj_value = np.sum(xy_text * proj_unit_vec, axis=1)
xy_text = xy_text[np.argsort(proj_value)]
# Sample pts in tcl map
if self.sample_pts_num == 0:
sample_pts_num = self.estimate_sample_pts_num(quad, xy_text)
else:
sample_pts_num = self.sample_pts_num
xy_center_line = xy_text[np.linspace(0, xy_text.shape[0] - 1, sample_pts_num,
endpoint=True, dtype=np.float32).astype(np.int32)]
point_pair_list = []
for x, y in xy_center_line:
# get corresponding offset
offset = tbo_map[y, x, :].reshape(2, 2)
if offset_expand != 1.0:
offset_length = np.linalg.norm(offset, axis=1, keepdims=True)
expand_length = np.clip(offset_length * (offset_expand - 1), a_min=0.5, a_max=3.0)
offset_detal = offset / offset_length * expand_length
offset = offset + offset_detal
# original point
ori_yx = np.array([y, x], dtype=np.float32)
point_pair = (ori_yx + offset)[:, ::-1]* out_strid / np.array([ratio_w, ratio_h]).reshape(-1, 2)
point_pair_list.append(point_pair)
# ndarry: (x, 2), expand poly along width
detected_poly = self.point_pair2poly(point_pair_list)
detected_poly = self.expand_poly_along_width(detected_poly, shrink_ratio_of_width)
detected_poly[:, 0] = np.clip(detected_poly[:, 0], a_min=0, a_max=src_w)
detected_poly[:, 1] = np.clip(detected_poly[:, 1], a_min=0, a_max=src_h)
poly_list.append(detected_poly)
return poly_list
def __call__(self, outs_dict, ratio_list):
score_list = outs_dict['f_score']
border_list = outs_dict['f_border']
tvo_list = outs_dict['f_tvo']
tco_list = outs_dict['f_tco']
img_num = len(ratio_list)
poly_lists = []
for ino in range(img_num):
p_score = score_list[ino].transpose((1,2,0))
p_border = border_list[ino].transpose((1,2,0))
p_tvo = tvo_list[ino].transpose((1,2,0))
p_tco = tco_list[ino].transpose((1,2,0))
# print(p_score.shape, p_border.shape, p_tvo.shape, p_tco.shape)
ratio_h, ratio_w, src_h, src_w = ratio_list[ino]
poly_list = self.detect_sast(p_score, p_tvo, p_border, p_tco, ratio_w, ratio_h, src_w, src_h,
shrink_ratio_of_width=self.shrink_ratio_of_width,
tcl_map_thresh=self.tcl_map_thresh, offset_expand=self.expand_scale)
poly_lists.append(poly_list)
return poly_lists

10
ppocr/utils/save_load.py Executable file → Normal file
View File

@ -21,7 +21,6 @@ import os
import shutil
import tempfile
import paddle
import paddle.fluid as fluid
from .utility import initial_logger
@ -110,17 +109,20 @@ def init_model(config, program, exe):
"""
checkpoints = config['Global'].get('checkpoints')
if checkpoints:
if os.path.exists(checkpoints + '.pdparams'):
path = checkpoints
fluid.load(program, path, exe)
logger.info("Finish initing model from {}".format(path))
return
else:
raise ValueError("Model checkpoints {} does not exists,"
"check if you lost the file prefix.".format(
checkpoints + '.pdparams'))
else:
pretrain_weights = config['Global'].get('pretrain_weights')
if pretrain_weights:
path = pretrain_weights
load_params(exe, program, path)
logger.info("Finish initing model from {}".format(path))
return
def save_model(program, model_path):

View File

@ -58,7 +58,7 @@ def main():
program.check_gpu(use_gpu)
alg = config['Global']['algorithm']
assert alg in ['EAST', 'DB', 'Rosetta', 'CRNN', 'STARNet', 'RARE']
assert alg in ['EAST', 'DB', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SAST']
if alg in ['Rosetta', 'CRNN', 'STARNet', 'RARE']:
config['Global']['char_ops'] = CharacterOps(config['Global'])
@ -75,7 +75,7 @@ def main():
init_model(config, eval_program, exe)
if alg in ['EAST', 'DB']:
if alg in ['EAST', 'DB', 'SAST']:
eval_reader = reader_main(config=config, mode="eval")
eval_info_dict = {'program':eval_program,\
'reader':eval_reader,\

View File

@ -88,8 +88,8 @@ class DetectionIoUEvaluator(object):
points = gt[n]['points']
# transcription = gt[n]['text']
dontCare = gt[n]['ignore']
points = Polygon(points)
points = points.buffer(0)
# points = Polygon(points)
# points = points.buffer(0)
if not Polygon(points).is_valid or not Polygon(points).is_simple:
continue
@ -105,8 +105,8 @@ class DetectionIoUEvaluator(object):
for n in range(len(pred)):
points = pred[n]['points']
points = Polygon(points)
points = points.buffer(0)
# points = Polygon(points)
# points = points.buffer(0)
if not Polygon(points).is_valid or not Polygon(points).is_simple:
continue