Support fixed length TRT prediction
This commit is contained in:
parent
1f99a63524
commit
24f8dfb7e1
|
@ -47,18 +47,20 @@ public:
|
|||
class ResizeImgType0 {
|
||||
public:
|
||||
virtual void Run(const cv::Mat &img, cv::Mat &resize_img, int max_size_len,
|
||||
float &ratio_h, float &ratio_w);
|
||||
float &ratio_h, float &ratio_w, bool use_tensorrt);
|
||||
};
|
||||
|
||||
class CrnnResizeImg {
|
||||
public:
|
||||
virtual void Run(const cv::Mat &img, cv::Mat &resize_img, float wh_ratio,
|
||||
bool use_tensorrt = false,
|
||||
const std::vector<int> &rec_image_shape = {3, 32, 320});
|
||||
};
|
||||
|
||||
class ClsResizeImg {
|
||||
public:
|
||||
virtual void Run(const cv::Mat &img, cv::Mat &resize_img,
|
||||
bool use_tensorrt = false,
|
||||
const std::vector<int> &rec_image_shape = {3, 48, 192});
|
||||
};
|
||||
|
||||
|
|
|
@ -77,7 +77,7 @@ int main(int argc, char **argv) {
|
|||
auto end = std::chrono::system_clock::now();
|
||||
auto duration =
|
||||
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
|
||||
std::cout << "Cost"
|
||||
std::cout << "Cost "
|
||||
<< double(duration.count()) *
|
||||
std::chrono::microseconds::period::num /
|
||||
std::chrono::microseconds::period::den
|
||||
|
|
|
@ -25,7 +25,7 @@ cv::Mat Classifier::Run(cv::Mat &img) {
|
|||
int index = 0;
|
||||
float wh_ratio = float(img.cols) / float(img.rows);
|
||||
|
||||
this->resize_op_.Run(img, resize_img, cls_image_shape);
|
||||
this->resize_op_.Run(img, resize_img, this->use_tensorrt_, cls_image_shape);
|
||||
|
||||
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
|
||||
this->is_scale_);
|
||||
|
|
|
@ -61,7 +61,8 @@ void DBDetector::Run(cv::Mat &img,
|
|||
cv::Mat srcimg;
|
||||
cv::Mat resize_img;
|
||||
img.copyTo(srcimg);
|
||||
this->resize_op_.Run(img, resize_img, this->max_side_len_, ratio_h, ratio_w);
|
||||
this->resize_op_.Run(img, resize_img, this->max_side_len_, ratio_h, ratio_w,
|
||||
this->use_tensorrt_);
|
||||
|
||||
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
|
||||
this->is_scale_);
|
||||
|
|
|
@ -33,7 +33,7 @@ void CRNNRecognizer::Run(std::vector<std::vector<std::vector<int>>> boxes,
|
|||
|
||||
float wh_ratio = float(crop_img.cols) / float(crop_img.rows);
|
||||
|
||||
this->resize_op_.Run(crop_img, resize_img, wh_ratio);
|
||||
this->resize_op_.Run(crop_img, resize_img, wh_ratio, this->use_tensorrt_);
|
||||
|
||||
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
|
||||
this->is_scale_);
|
||||
|
|
|
@ -60,7 +60,8 @@ void Normalize::Run(cv::Mat *im, const std::vector<float> &mean,
|
|||
}
|
||||
|
||||
void ResizeImgType0::Run(const cv::Mat &img, cv::Mat &resize_img,
|
||||
int max_size_len, float &ratio_h, float &ratio_w) {
|
||||
int max_size_len, float &ratio_h, float &ratio_w,
|
||||
bool use_tensorrt) {
|
||||
int w = img.cols;
|
||||
int h = img.rows;
|
||||
|
||||
|
@ -89,14 +90,19 @@ void ResizeImgType0::Run(const cv::Mat &img, cv::Mat &resize_img,
|
|||
resize_w = 32;
|
||||
else
|
||||
resize_w = (resize_w / 32) * 32;
|
||||
|
||||
cv::resize(img, resize_img, cv::Size(resize_w, resize_h));
|
||||
|
||||
ratio_h = float(resize_h) / float(h);
|
||||
ratio_w = float(resize_w) / float(w);
|
||||
if (!use_tensorrt) {
|
||||
cv::resize(img, resize_img, cv::Size(resize_w, resize_h));
|
||||
ratio_h = float(resize_h) / float(h);
|
||||
ratio_w = float(resize_w) / float(w);
|
||||
} else {
|
||||
cv::resize(img, resize_img, cv::Size(640, 640));
|
||||
ratio_h = float(640) / float(h);
|
||||
ratio_w = float(640) / float(w);
|
||||
}
|
||||
}
|
||||
|
||||
void CrnnResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img, float wh_ratio,
|
||||
bool use_tensorrt,
|
||||
const std::vector<int> &rec_image_shape) {
|
||||
int imgC, imgH, imgW;
|
||||
imgC = rec_image_shape[0];
|
||||
|
@ -111,12 +117,27 @@ void CrnnResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img, float wh_ratio,
|
|||
resize_w = imgW;
|
||||
else
|
||||
resize_w = int(ceilf(imgH * ratio));
|
||||
|
||||
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
|
||||
cv::INTER_LINEAR);
|
||||
if (!use_tensorrt) {
|
||||
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
|
||||
cv::INTER_LINEAR);
|
||||
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0,
|
||||
int(imgW - resize_img.cols), cv::BORDER_CONSTANT,
|
||||
{127, 127, 127});
|
||||
} else {
|
||||
int k = int(img.cols * 32 / img.rows);
|
||||
if (k >= 100) {
|
||||
cv::resize(img, resize_img, cv::Size(100, 32), 0.f, 0.f,
|
||||
cv::INTER_LINEAR);
|
||||
} else {
|
||||
cv::resize(img, resize_img, cv::Size(k, 32), 0.f, 0.f, cv::INTER_LINEAR);
|
||||
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0, int(100 - k),
|
||||
cv::BORDER_CONSTANT, {127, 127, 127});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ClsResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img,
|
||||
bool use_tensorrt,
|
||||
const std::vector<int> &rec_image_shape) {
|
||||
int imgC, imgH, imgW;
|
||||
imgC = rec_image_shape[0];
|
||||
|
@ -130,11 +151,15 @@ void ClsResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img,
|
|||
else
|
||||
resize_w = int(ceilf(imgH * ratio));
|
||||
|
||||
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
|
||||
cv::INTER_LINEAR);
|
||||
if (resize_w < imgW) {
|
||||
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0, imgW - resize_w,
|
||||
cv::BORDER_CONSTANT, cv::Scalar(0, 0, 0));
|
||||
if (!use_tensorrt) {
|
||||
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
|
||||
cv::INTER_LINEAR);
|
||||
if (resize_w < imgW) {
|
||||
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0, imgW - resize_w,
|
||||
cv::BORDER_CONSTANT, cv::Scalar(0, 0, 0));
|
||||
}
|
||||
} else {
|
||||
cv::resize(img, resize_img, cv::Size(100, 32), 0.f, 0.f, cv::INTER_LINEAR);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue