update
This commit is contained in:
parent
36152456f5
commit
25de5bece5
|
@ -90,9 +90,6 @@ private:
|
||||||
// post-process
|
// post-process
|
||||||
PostProcessor post_processor_;
|
PostProcessor post_processor_;
|
||||||
|
|
||||||
cv::Mat GetRotateCropImage(const cv::Mat &srcimage,
|
|
||||||
std::vector<std::vector<int>> box);
|
|
||||||
|
|
||||||
}; // class CrnnRecognizer
|
}; // class CrnnRecognizer
|
||||||
|
|
||||||
} // namespace PaddleOCR
|
} // namespace PaddleOCR
|
||||||
|
|
|
@ -118,10 +118,10 @@ void DBDetector::Run(cv::Mat &img,
|
||||||
auto preprocess_end = std::chrono::steady_clock::now();
|
auto preprocess_end = std::chrono::steady_clock::now();
|
||||||
|
|
||||||
// Inference.
|
// Inference.
|
||||||
auto inference_start = std::chrono::steady_clock::now();
|
|
||||||
auto input_names = this->predictor_->GetInputNames();
|
auto input_names = this->predictor_->GetInputNames();
|
||||||
auto input_t = this->predictor_->GetInputHandle(input_names[0]);
|
auto input_t = this->predictor_->GetInputHandle(input_names[0]);
|
||||||
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
|
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
|
||||||
|
auto inference_start = std::chrono::steady_clock::now();
|
||||||
input_t->CopyFromCpu(input.data());
|
input_t->CopyFromCpu(input.data());
|
||||||
|
|
||||||
this->predictor_->Run();
|
this->predictor_->Run();
|
||||||
|
@ -165,8 +165,8 @@ void DBDetector::Run(cv::Mat &img,
|
||||||
this->det_db_unclip_ratio_, this->use_polygon_score_);
|
this->det_db_unclip_ratio_, this->use_polygon_score_);
|
||||||
|
|
||||||
boxes = post_processor_.FilterTagDetRes(boxes, ratio_h, ratio_w, srcimg);
|
boxes = post_processor_.FilterTagDetRes(boxes, ratio_h, ratio_w, srcimg);
|
||||||
std::cout << "Detected boxes num: " << boxes.size() << endl;
|
|
||||||
auto postprocess_end = std::chrono::steady_clock::now();
|
auto postprocess_end = std::chrono::steady_clock::now();
|
||||||
|
std::cout << "Detected boxes num: " << boxes.size() << endl;
|
||||||
|
|
||||||
std::chrono::duration<float> preprocess_diff = preprocess_end - preprocess_start;
|
std::chrono::duration<float> preprocess_diff = preprocess_end - preprocess_start;
|
||||||
times->push_back(double(preprocess_diff.count() * 1000));
|
times->push_back(double(preprocess_diff.count() * 1000));
|
||||||
|
|
|
@ -34,10 +34,10 @@ void CRNNRecognizer::Run(cv::Mat &img, std::vector<double> *times) {
|
||||||
auto preprocess_end = std::chrono::steady_clock::now();
|
auto preprocess_end = std::chrono::steady_clock::now();
|
||||||
|
|
||||||
// Inference.
|
// Inference.
|
||||||
auto inference_start = std::chrono::steady_clock::now();
|
|
||||||
auto input_names = this->predictor_->GetInputNames();
|
auto input_names = this->predictor_->GetInputNames();
|
||||||
auto input_t = this->predictor_->GetInputHandle(input_names[0]);
|
auto input_t = this->predictor_->GetInputHandle(input_names[0]);
|
||||||
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
|
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
|
||||||
|
auto inference_start = std::chrono::steady_clock::now();
|
||||||
input_t->CopyFromCpu(input.data());
|
input_t->CopyFromCpu(input.data());
|
||||||
this->predictor_->Run();
|
this->predictor_->Run();
|
||||||
|
|
||||||
|
@ -77,12 +77,12 @@ void CRNNRecognizer::Run(cv::Mat &img, std::vector<double> *times) {
|
||||||
}
|
}
|
||||||
last_index = argmax_idx;
|
last_index = argmax_idx;
|
||||||
}
|
}
|
||||||
|
auto postprocess_end = std::chrono::steady_clock::now();
|
||||||
score /= count;
|
score /= count;
|
||||||
for (int i = 0; i < str_res.size(); i++) {
|
for (int i = 0; i < str_res.size(); i++) {
|
||||||
std::cout << str_res[i];
|
std::cout << str_res[i];
|
||||||
}
|
}
|
||||||
std::cout << "\tscore: " << score << std::endl;
|
std::cout << "\tscore: " << score << std::endl;
|
||||||
auto postprocess_end = std::chrono::steady_clock::now();
|
|
||||||
|
|
||||||
std::chrono::duration<float> preprocess_diff = preprocess_end - preprocess_start;
|
std::chrono::duration<float> preprocess_diff = preprocess_end - preprocess_start;
|
||||||
times->push_back(double(preprocess_diff.count() * 1000));
|
times->push_back(double(preprocess_diff.count() * 1000));
|
||||||
|
@ -144,59 +144,4 @@ void CRNNRecognizer::LoadModel(const std::string &model_dir) {
|
||||||
this->predictor_ = CreatePredictor(config);
|
this->predictor_ = CreatePredictor(config);
|
||||||
}
|
}
|
||||||
|
|
||||||
cv::Mat CRNNRecognizer::GetRotateCropImage(const cv::Mat &srcimage,
|
|
||||||
std::vector<std::vector<int>> box) {
|
|
||||||
cv::Mat image;
|
|
||||||
srcimage.copyTo(image);
|
|
||||||
std::vector<std::vector<int>> points = box;
|
|
||||||
|
|
||||||
int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
|
|
||||||
int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
|
|
||||||
int left = int(*std::min_element(x_collect, x_collect + 4));
|
|
||||||
int right = int(*std::max_element(x_collect, x_collect + 4));
|
|
||||||
int top = int(*std::min_element(y_collect, y_collect + 4));
|
|
||||||
int bottom = int(*std::max_element(y_collect, y_collect + 4));
|
|
||||||
|
|
||||||
cv::Mat img_crop;
|
|
||||||
image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);
|
|
||||||
|
|
||||||
for (int i = 0; i < points.size(); i++) {
|
|
||||||
points[i][0] -= left;
|
|
||||||
points[i][1] -= top;
|
|
||||||
}
|
|
||||||
|
|
||||||
int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
|
|
||||||
pow(points[0][1] - points[1][1], 2)));
|
|
||||||
int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
|
|
||||||
pow(points[0][1] - points[3][1], 2)));
|
|
||||||
|
|
||||||
cv::Point2f pts_std[4];
|
|
||||||
pts_std[0] = cv::Point2f(0., 0.);
|
|
||||||
pts_std[1] = cv::Point2f(img_crop_width, 0.);
|
|
||||||
pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
|
|
||||||
pts_std[3] = cv::Point2f(0.f, img_crop_height);
|
|
||||||
|
|
||||||
cv::Point2f pointsf[4];
|
|
||||||
pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
|
|
||||||
pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
|
|
||||||
pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
|
|
||||||
pointsf[3] = cv::Point2f(points[3][0], points[3][1]);
|
|
||||||
|
|
||||||
cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);
|
|
||||||
|
|
||||||
cv::Mat dst_img;
|
|
||||||
cv::warpPerspective(img_crop, dst_img, M,
|
|
||||||
cv::Size(img_crop_width, img_crop_height),
|
|
||||||
cv::BORDER_REPLICATE);
|
|
||||||
|
|
||||||
if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
|
|
||||||
cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
|
|
||||||
cv::transpose(dst_img, srcCopy);
|
|
||||||
cv::flip(srcCopy, srcCopy, 0);
|
|
||||||
return srcCopy;
|
|
||||||
} else {
|
|
||||||
return dst_img;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace PaddleOCR
|
} // namespace PaddleOCR
|
||||||
|
|
Loading…
Reference in New Issue