fix readme
|
@ -2,7 +2,7 @@
|
|||
|
||||
PaddleOCR提供2种服务部署方式:
|
||||
- 基于PaddleHub Serving的部署:代码路径为"`./deploy/hubserving`",按照本教程使用;
|
||||
- (coming soon)基于PaddleServing的部署:代码路径为"`./deploy/pdserving`",使用方法参考[文档](../../deploy/pdserving/readme.md)。
|
||||
- 基于PaddleServing的部署:代码路径为"`./deploy/pdserving`",使用方法参考[文档](../../deploy/pdserving/README_CN.md)。
|
||||
|
||||
# 基于PaddleHub Serving的服务部署
|
||||
|
||||
|
|
|
@ -2,7 +2,7 @@ English | [简体中文](readme.md)
|
|||
|
||||
PaddleOCR provides 2 service deployment methods:
|
||||
- Based on **PaddleHub Serving**: Code path is "`./deploy/hubserving`". Please follow this tutorial.
|
||||
- (coming soon)Based on **PaddleServing**: Code path is "`./deploy/pdserving`". Please refer to the [tutorial](../../deploy/pdserving/readme.md) for usage.
|
||||
- Based on **PaddleServing**: Code path is "`./deploy/pdserving`". Please refer to the [tutorial](../../deploy/pdserving/README.md) for usage.
|
||||
|
||||
# Service deployment based on PaddleHub Serving
|
||||
|
||||
|
|
|
@ -4,7 +4,8 @@
|
|||
|
||||
This document will introduce how to use the [PaddleServing](https://github.com/PaddlePaddle/Serving/blob/develop/README_CN.md) to deploy the PPOCR dynamic graph model as a pipeline online service.
|
||||
|
||||
**note**: Paddle Serving service deployment framework introduction and tutorial reference [document](https://aistudio.baidu.com/aistudio/projectdetail/1550674).
|
||||
Compared with hubserving deployment, PaddleServing supports high concurrency and efficient communication between the client and the server.
|
||||
The introduction and tutorial of Paddle Serving service deployment framework reference [document](https://aistudio.baidu.com/aistudio/projectdetail/1550674).
|
||||
|
||||
|
||||
## Contents
|
||||
|
@ -42,8 +43,17 @@ pip3 install paddle-serving-client-gpu==0.5.0 # for GPU
|
|||
3. Install serving-app
|
||||
```
|
||||
pip3 install paddle-serving-app==0.3.0
|
||||
# fix local_predict to support load dynamic model
|
||||
# find the install directoory of paddle_serving_app
|
||||
vim /usr/local/lib/python3.7/site-packages/paddle_serving_app/local_predict.py
|
||||
# replace line 85 of local_predict.py config = AnalysisConfig(model_path) with:
|
||||
if os.path.exists(os.path.join(model_path, "__params__")):
|
||||
config = AnalysisConfig(os.path.join(model_path, "__model__"), os.path.join(model_path, "__params__"))
|
||||
else:
|
||||
config = AnalysisConfig(model_path)
|
||||
```
|
||||
|
||||
|
||||
**note:** If you want to install the latest version of PaddleServing, refer to [link](https://github.com/PaddlePaddle/Serving/blob/develop/doc/LATEST_PACKAGES.md).
|
||||
|
||||
|
|
@ -5,7 +5,7 @@
|
|||
本文档将介绍如何使用[PaddleServing](https://github.com/PaddlePaddle/Serving/blob/develop/README_CN.md)工具部署PPOCR
|
||||
动态图模型的pipeline在线服务。
|
||||
|
||||
**note**: Paddle Serving服务化部署框架介绍和使用教程参考[文档](https://aistudio.baidu.com/aistudio/projectdetail/1550674)。
|
||||
相比较于hubserving部署,PaddleServing支持客户端和服务端之间 高并发和高效通信,更多有关Paddle Serving服务化部署框架介绍和使用教程参考[文档](https://aistudio.baidu.com/aistudio/projectdetail/1550674)。
|
||||
|
||||
## 目录
|
||||
- 环境准备
|
||||
|
@ -44,6 +44,16 @@ pip3 install paddle-serving-client-gpu==0.5.0 # for GPU
|
|||
```
|
||||
pip3 install paddle-serving-app==0.3.0
|
||||
```
|
||||
**note:** 安装0.3.0版本的serving-app后,为了能加载动态图模型,需要修改serving_app的源码,具体为:
|
||||
```
|
||||
# 找到paddle_serving_app的安装目录,找到并编辑local_predict.py文件
|
||||
vim /usr/local/lib/python3.7/site-packages/paddle_serving_app/local_predict.py
|
||||
# 将local_predict.py 的第85行 config = AnalysisConfig(model_path) 替换为:
|
||||
if os.path.exists(os.path.join(model_path, "__params__")):
|
||||
config = AnalysisConfig(os.path.join(model_path, "__model__"), os.path.join(model_path, "__params__"))
|
||||
else:
|
||||
config = AnalysisConfig(model_path)
|
||||
```
|
||||
|
||||
**note:** 如果要安装最新版本的PaddleServing参考[链接](https://github.com/PaddlePaddle/Serving/blob/develop/doc/LATEST_PACKAGES.md)。
|
||||
|
Before Width: | Height: | Size: 26 KiB After Width: | Height: | Size: 26 KiB |
Before Width: | Height: | Size: 998 KiB After Width: | Height: | Size: 998 KiB |
Before Width: | Height: | Size: 119 KiB After Width: | Height: | Size: 119 KiB |
Before Width: | Height: | Size: 195 KiB After Width: | Height: | Size: 195 KiB |