update en doc
This commit is contained in:
parent
51b3453cd7
commit
27c9faed4e
|
@ -1,5 +1,5 @@
|
||||||
|
|
||||||
# Reasoning based on Python prediction engine
|
# INFERING BASED ON PYTHON PREDICTION ENGINE
|
||||||
|
|
||||||
The inference model (the model saved by `paddle.jit.save`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.
|
The inference model (the model saved by `paddle.jit.save`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.
|
||||||
|
|
||||||
|
@ -15,34 +15,33 @@ Next, we first introduce how to convert a trained model into an inference model,
|
||||||
- [Convert recognition model to inference model](#Convert_recognition_model)
|
- [Convert recognition model to inference model](#Convert_recognition_model)
|
||||||
- [Convert angle classification model to inference model](#Convert_angle_class_model)
|
- [Convert angle classification model to inference model](#Convert_angle_class_model)
|
||||||
|
|
||||||
|
|
||||||
- [TEXT DETECTION MODEL INFERENCE](#DETECTION_MODEL_INFERENCE)
|
- [TEXT DETECTION MODEL INFERENCE](#DETECTION_MODEL_INFERENCE)
|
||||||
- [1. LIGHTWEIGHT CHINESE DETECTION MODEL INFERENCE](#LIGHTWEIGHT_DETECTION)
|
- [1. Lightweight Chinese Detection Model Inference](#LIGHTWEIGHT_DETECTION)
|
||||||
- [2. DB TEXT DETECTION MODEL INFERENCE](#DB_DETECTION)
|
- [2. DB Text Detection Model Inference](#DB_DETECTION)
|
||||||
- [3. EAST TEXT DETECTION MODEL INFERENCE](#EAST_DETECTION)
|
- [3. EAST Text Detection Model Inference](#EAST_DETECTION)
|
||||||
- [4. SAST TEXT DETECTION MODEL INFERENCE](#SAST_DETECTION)
|
- [4. SAST Text Detection Model Inference](#SAST_DETECTION)
|
||||||
- [5. Multilingual model inference](#Multilingual model inference)
|
- [5. Multilingual Model Inference](#Multilingual model inference)
|
||||||
|
|
||||||
- [TEXT RECOGNITION MODEL INFERENCE](#RECOGNITION_MODEL_INFERENCE)
|
- [TEXT RECOGNITION MODEL INFERENCE](#RECOGNITION_MODEL_INFERENCE)
|
||||||
- [1. LIGHTWEIGHT CHINESE MODEL](#LIGHTWEIGHT_RECOGNITION)
|
- [1. Lightweight Chinese Model](#LIGHTWEIGHT_RECOGNITION)
|
||||||
- [2. CTC-BASED TEXT RECOGNITION MODEL INFERENCE](#CTC-BASED_RECOGNITION)
|
- [2. CTC-BASED Text Recognition Model Inference](#CTC-BASED_RECOGNITION)
|
||||||
- [3. SRN-BASED TEXT RECOGNITION MODEL INFERENCE](#SRN-BASED_RECOGNITION)
|
- [3. SRN-BASED Text Recognition Model Inference](#SRN-BASED_RECOGNITION)
|
||||||
- [3. TEXT RECOGNITION MODEL INFERENCE USING CUSTOM CHARACTERS DICTIONARY](#USING_CUSTOM_CHARACTERS)
|
- [3. Text Recognition Model Inference Using Custom Characters Dictionary](#USING_CUSTOM_CHARACTERS)
|
||||||
- [4. MULTILINGUAL MODEL INFERENCE](MULTILINGUAL_MODEL_INFERENCE)
|
- [4. Multilingual Model Inference](#MULTILINGUAL_MODEL_INFERENCE)
|
||||||
|
|
||||||
- [ANGLE CLASSIFICATION MODEL INFERENCE](#ANGLE_CLASS_MODEL_INFERENCE)
|
- [ANGLE CLASSIFICATION MODEL INFERENCE](#ANGLE_CLASS_MODEL_INFERENCE)
|
||||||
- [1. ANGLE CLASSIFICATION MODEL INFERENCE](#ANGLE_CLASS_MODEL_INFERENCE)
|
- [1. Angle Classification Model Inference](#ANGLE_CLASS_MODEL_INFERENCE)
|
||||||
|
|
||||||
- [TEXT DETECTION ANGLE CLASSIFICATION AND RECOGNITION INFERENCE CONCATENATION](#CONCATENATION)
|
- [TEXT DETECTION ANGLE CLASSIFICATION AND RECOGNITION INFERENCE CONCATENATION](#CONCATENATION)
|
||||||
- [1. LIGHTWEIGHT CHINESE MODEL](#LIGHTWEIGHT_CHINESE_MODEL)
|
- [1. Lightweight Chinese Model](#LIGHTWEIGHT_CHINESE_MODEL)
|
||||||
- [2. OTHER MODELS](#OTHER_MODELS)
|
- [2. Other Models](#OTHER_MODELS)
|
||||||
|
|
||||||
<a name="CONVERT"></a>
|
<a name="CONVERT"></a>
|
||||||
## CONVERT TRAINING MODEL TO INFERENCE MODEL
|
## CONVERT TRAINING MODEL TO INFERENCE MODEL
|
||||||
<a name="Convert_detection_model"></a>
|
<a name="Convert_detection_model"></a>
|
||||||
### Convert detection model to inference model
|
### Convert detection model to inference model
|
||||||
|
|
||||||
Download the lightweight Chinese detection model:
|
Download the lightweight Chinese_en detection model:
|
||||||
```
|
```
|
||||||
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_det_train.tar -C ./ch_lite/
|
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_det_train.tar -C ./ch_lite/
|
||||||
```
|
```
|
||||||
|
@ -69,9 +68,9 @@ inference/det_db/
|
||||||
<a name="Convert_recognition_model"></a>
|
<a name="Convert_recognition_model"></a>
|
||||||
### Convert recognition model to inference model
|
### Convert recognition model to inference model
|
||||||
|
|
||||||
Download the lightweight Chinese recognition model:
|
Download the lightweight English recognition model:
|
||||||
```
|
```
|
||||||
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_rec_train.tar -C ./ch_lite/
|
wget -P ./en_lite/ ttps://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_train.tar && tar xf ./en_lite/en_number_mobile_v2.0_rec_train.tar -C ./en_lite/
|
||||||
```
|
```
|
||||||
|
|
||||||
The recognition model is converted to the inference model in the same way as the detection, as follows:
|
The recognition model is converted to the inference model in the same way as the detection, as follows:
|
||||||
|
@ -81,14 +80,14 @@ The recognition model is converted to the inference model in the same way as the
|
||||||
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
|
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
|
||||||
# Global.save_inference_dir Set the address where the converted model will be saved.
|
# Global.save_inference_dir Set the address where the converted model will be saved.
|
||||||
|
|
||||||
python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy Global.save_inference_dir=./inference/rec_crnn/
|
python3 tools/export_model.py -c configs/rec/multi_language/rec_en_number_lite_train.yml -o Global.pretrained_model=./en_lite/en_number_mobile_v2.0_rec_train/best_accuracy Global.save_inference_dir=./inference/rec_crnn/
|
||||||
```
|
```
|
||||||
|
|
||||||
If you have a model trained on your own dataset with a different dictionary file, please make sure that you modify the `character_dict_path` in the configuration file to your dictionary file path.
|
If you have a model trained on your own dataset with a different dictionary file, please make sure that you modify the `character_dict_path` in the configuration file to your dictionary file path.
|
||||||
|
|
||||||
After the conversion is successful, there are three files in the model save directory:
|
After the conversion is successful, there are three files in the model save directory:
|
||||||
```
|
```
|
||||||
inference/det_db/
|
inference/rec_crnn/
|
||||||
├── inference.pdiparams # The parameter file of recognition inference model
|
├── inference.pdiparams # The parameter file of recognition inference model
|
||||||
├── inference.pdiparams.info # The parameter information of recognition inference model, which can be ignored
|
├── inference.pdiparams.info # The parameter information of recognition inference model, which can be ignored
|
||||||
└── inference.pdmodel # The program file of recognition model
|
└── inference.pdmodel # The program file of recognition model
|
||||||
|
@ -137,7 +136,7 @@ For lightweight Chinese detection model inference, you can execute the following
|
||||||
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
|
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
|
||||||
tar xf ch_ppocr_mobile_v2.0_det_infer.tar
|
tar xf ch_ppocr_mobile_v2.0_det_infer.tar
|
||||||
# predict
|
# predict
|
||||||
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/"
|
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="ch_ppocr_mobile_v2.0_det_infer/"
|
||||||
```
|
```
|
||||||
|
|
||||||
The visual text detection results are saved to the ./inference_results folder by default, and the name of the result file is prefixed with'det_res'. Examples of results are as follows:
|
The visual text detection results are saved to the ./inference_results folder by default, and the name of the result file is prefixed with'det_res'. Examples of results are as follows:
|
||||||
|
@ -145,12 +144,12 @@ The visual text detection results are saved to the ./inference_results folder by
|
||||||
![](../imgs_results/det_res_00018069.jpg)
|
![](../imgs_results/det_res_00018069.jpg)
|
||||||
|
|
||||||
You can use the parameters `limit_type` and `det_limit_side_len` to limit the size of the input image,
|
You can use the parameters `limit_type` and `det_limit_side_len` to limit the size of the input image,
|
||||||
The optional parameters of `limit_type` are [`max`, `min`], and
|
The optional parameters of `limit_type` is `max` or `min` and
|
||||||
`det_limit_size_len` is a positive integer, generally set to a multiple of 32, such as 960.
|
`det_limit_size_len` is a positive integer, generally set to a multiple of 32, such as 960.
|
||||||
|
|
||||||
The default setting of the parameters is `limit_type='max', det_limit_side_len=960`. Indicates that the longest side of the network input image cannot exceed 960,
|
The default setting of the parameters is `limit_type='max', det_limit_side_len=960`. Indicates that the longest side of the network input image cannot exceed 960,
|
||||||
If this value is exceeded, the image will be resized with the same width ratio to ensure that the longest side is `det_limit_side_len`.
|
If this value is exceeded, the image will be resized with the same width ratio to ensure that the longest side is `det_limit_side_len`.
|
||||||
Set as `limit_type='min', det_limit_side_len=960`, it means that the shortest side of the image is limited to 960.
|
Set as `limit_type='min', det_limit_side_len=960` it means that the shortest side of the image is limited to 960.
|
||||||
|
|
||||||
If the resolution of the input picture is relatively large and you want to use a larger resolution prediction, you can set det_limit_side_len to the desired value, such as 1216:
|
If the resolution of the input picture is relatively large and you want to use a larger resolution prediction, you can set det_limit_side_len to the desired value, such as 1216:
|
||||||
```
|
```
|
||||||
|
@ -249,15 +248,15 @@ The following will introduce the lightweight Chinese recognition model inference
|
||||||
|
|
||||||
|
|
||||||
<a name="LIGHTWEIGHT_RECOGNITION"></a>
|
<a name="LIGHTWEIGHT_RECOGNITION"></a>
|
||||||
### 1. LIGHTWEIGHT CHINESE TEXT RECOGNITION MODEL REFERENCE
|
### 1. LIGHTWEIGHT ENGLISH TEXT RECOGNITION MODEL REFERENCE
|
||||||
|
|
||||||
For lightweight Chinese recognition model inference, you can execute the following commands:
|
For lightweight Chinese recognition model inference, you can execute the following commands:
|
||||||
|
|
||||||
```
|
```
|
||||||
# download CRNN text recognition inference model
|
# download CRNN text recognition inference model
|
||||||
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
|
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar
|
||||||
tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
|
tar xf en_number_mobile_v2.0_rec_infer.tar
|
||||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_10.png" --rec_model_dir="ch_ppocr_mobile_v2.0_rec_infer"
|
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_10.png" --rec_model_dir="en_number_mobile_v2.0_rec_infer" --rec_char_dict_path='ppocr/utils/en_dict.txt'
|
||||||
```
|
```
|
||||||
|
|
||||||
![](../imgs_words_en/word_10.png)
|
![](../imgs_words_en/word_10.png)
|
||||||
|
@ -388,7 +387,6 @@ python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --de
|
||||||
# use multi-process
|
# use multi-process
|
||||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=false --use_mp=True --total_process_num=6
|
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=false --use_mp=True --total_process_num=6
|
||||||
```
|
```
|
||||||
```
|
|
||||||
|
|
||||||
After executing the command, the recognition result image is as follows:
|
After executing the command, the recognition result image is as follows:
|
||||||
|
|
||||||
|
|
|
@ -66,12 +66,12 @@ pip3 install dist/paddleocr-x.x.x-py3-none-any.whl # x.x.x is the version number
|
||||||
```
|
```
|
||||||
|
|
||||||
<a name="Quick_use"></a>
|
<a name="Quick_use"></a>
|
||||||
## 2 Quick use
|
## 2 Quick Use
|
||||||
|
|
||||||
<a name="Command_line_operation"></a>
|
<a name="Command_line_operation"></a>
|
||||||
### 2.1 Command line operation
|
### 2.1 Command Line Operation
|
||||||
|
|
||||||
View help information
|
* View help information
|
||||||
|
|
||||||
```
|
```
|
||||||
paddleocr -h
|
paddleocr -h
|
||||||
|
@ -80,7 +80,7 @@ paddleocr -h
|
||||||
* Whole image prediction (detection + recognition)
|
* Whole image prediction (detection + recognition)
|
||||||
|
|
||||||
Paddleocr currently supports 80 languages, which can be switched by modifying the --lang parameter.
|
Paddleocr currently supports 80 languages, which can be switched by modifying the --lang parameter.
|
||||||
The specific supported [language] (#language_abbreviations) can be viewed in the table.
|
The specific supported [language](#language_abbreviations) can be viewed in the table.
|
||||||
|
|
||||||
``` bash
|
``` bash
|
||||||
paddleocr --image_dir doc/imgs_en/254.jpg --lang=en
|
paddleocr --image_dir doc/imgs_en/254.jpg --lang=en
|
||||||
|
@ -132,9 +132,9 @@ The result is a list, each item contains only text boxes
|
||||||
```
|
```
|
||||||
|
|
||||||
<a name="python_script_running"></a>
|
<a name="python_script_running"></a>
|
||||||
### 2.2 python script running
|
### 2.2 Python Script Running
|
||||||
|
|
||||||
ppocr also supports running in python scripts for easy embedding in your own code:
|
PPocr also supports running in python scripts for easy embedding in your own code:
|
||||||
|
|
||||||
* Whole image prediction (detection + recognition)
|
* Whole image prediction (detection + recognition)
|
||||||
|
|
||||||
|
@ -158,7 +158,7 @@ image = Image.open(img_path).convert('RGB')
|
||||||
boxes = [line[0] for line in result]
|
boxes = [line[0] for line in result]
|
||||||
txts = [line[1][0] for line in result]
|
txts = [line[1][0] for line in result]
|
||||||
scores = [line[1][1] for line in result]
|
scores = [line[1][1] for line in result]
|
||||||
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/fonts/korean.ttf')
|
im_show = draw_ocr(image, boxes, txts, scores, font_path='doc/fonts/korean.ttf')
|
||||||
im_show = Image.fromarray(im_show)
|
im_show = Image.fromarray(im_show)
|
||||||
im_show.save('result.jpg')
|
im_show.save('result.jpg')
|
||||||
```
|
```
|
||||||
|
@ -167,12 +167,12 @@ Visualization of results:
|
||||||
![](https://raw.githubusercontent.com/PaddlePaddle/PaddleOCR/release/2.1/doc/imgs_results/korean.jpg)
|
![](https://raw.githubusercontent.com/PaddlePaddle/PaddleOCR/release/2.1/doc/imgs_results/korean.jpg)
|
||||||
|
|
||||||
|
|
||||||
ppocr also supports direction classification. For more usage methods, please refer to: [whl package instructions](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.0/doc/doc_ch/whl.md).
|
ppocr also supports direction classification. For more usage methods, please refer to: [whl package instructions](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.0/doc/doc_en/whl_en.md).
|
||||||
|
|
||||||
<a name="Custom_training"></a>
|
<a name="Custom_training"></a>
|
||||||
## 3 Custom training
|
## 3 Custom Training
|
||||||
|
|
||||||
ppocr supports using your own data for custom training or finetune, where the recognition model can refer to [French configuration file](../../configs/rec/multi_language/rec_french_lite_train.yml)
|
PPOCR supports using your own data for custom training or finetune, where the configuration file can refer to [French model](../../configs/rec/multi_language/rec_french_lite_train.yml)
|
||||||
Modify the training data path, dictionary and other parameters.
|
Modify the training data path, dictionary and other parameters.
|
||||||
|
|
||||||
For specific data preparation and training process, please refer to: [Text Detection](../doc_en/detection_en.md), [Text Recognition](../doc_en/recognition_en.md), more functions such as predictive deployment,
|
For specific data preparation and training process, please refer to: [Text Detection](../doc_en/detection_en.md), [Text Recognition](../doc_en/recognition_en.md), more functions such as predictive deployment,
|
||||||
|
@ -185,6 +185,11 @@ For functions such as data annotation, you can read the complete [Document Tutor
|
||||||
In addition to installing the whl package for quick forecasting,
|
In addition to installing the whl package for quick forecasting,
|
||||||
ppocr also provides a variety of forecasting deployment methods.
|
ppocr also provides a variety of forecasting deployment methods.
|
||||||
If necessary, you can read related documents:
|
If necessary, you can read related documents:
|
||||||
|
- [Python Inference](./inference_en.md)
|
||||||
|
- [C++ Inference](../../deploy/cpp_infer/readme_en.md)
|
||||||
|
- [Serving](../../deploy/hubserving/readme_en.md)
|
||||||
|
- [Mobile](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/deploy/lite/readme_en.md)
|
||||||
|
|
||||||
|
|
||||||
The deployment tutorial uses the Chinese model by default. If you need to use other language models,
|
The deployment tutorial uses the Chinese model by default. If you need to use other language models,
|
||||||
please replace the model files and dictionaries yourself:
|
please replace the model files and dictionaries yourself:
|
||||||
|
@ -195,20 +200,14 @@ please replace the model files and dictionaries yourself:
|
||||||
| german_mobile_v2.0_rec | ppocr/utils/dict/german_dict.txt | Lightweight model for German recognition|[rec_german_lite_train.yml](../../configs/rec/multi_language/rec_german_lite_train.yml)|2.65M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_train.tar) |
|
| german_mobile_v2.0_rec | ppocr/utils/dict/german_dict.txt | Lightweight model for German recognition|[rec_german_lite_train.yml](../../configs/rec/multi_language/rec_german_lite_train.yml)|2.65M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_train.tar) |
|
||||||
| korean_mobile_v2.0_rec | ppocr/utils/dict/korean_dict.txt | Lightweight model for Korean recognition|[rec_korean_lite_train.yml](../../configs/rec/multi_language/rec_korean_lite_train.yml)|3.9M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_train.tar) |
|
| korean_mobile_v2.0_rec | ppocr/utils/dict/korean_dict.txt | Lightweight model for Korean recognition|[rec_korean_lite_train.yml](../../configs/rec/multi_language/rec_korean_lite_train.yml)|3.9M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_train.tar) |
|
||||||
| japan_mobile_v2.0_rec | ppocr/utils/dict/japan_dict.txt | Lightweight model for Japanese recognition|[rec_japan_lite_train.yml](../../configs/rec/multi_language/rec_japan_lite_train.yml)|4.23M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_train.tar) |
|
| japan_mobile_v2.0_rec | ppocr/utils/dict/japan_dict.txt | Lightweight model for Japanese recognition|[rec_japan_lite_train.yml](../../configs/rec/multi_language/rec_japan_lite_train.yml)|4.23M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_train.tar) |
|
||||||
| chinese_cht_mobile_v2.0_rec | ppocr/utils/dict/chinese_cht_dict.txt | Lightweight model for chinese cht recognition|rec_chinese_cht_lite_train.yml|5.63M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/chinese_cht_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/chinese_cht_mobile_v2.0_rec_train.tar) |
|
| chinese_cht_mobile_v2.0_rec | ppocr/utils/dict/chinese_cht_dict.txt | Lightweight model for chinese cht recognition|rec_chinese_cht_lite_train.yml|5.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/chinese_cht_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/chinese_cht_mobile_v2.0_rec_train.tar) |
|
||||||
| te_mobile_v2.0_rec | ppocr/utils/dict/te_dict.txt | Lightweight model for Telugu recognition|rec_te_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/te_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/te_mobile_v2.0_rec_train.tar) |
|
| te_mobile_v2.0_rec | ppocr/utils/dict/te_dict.txt | Lightweight model for Telugu recognition|rec_te_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/te_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/te_mobile_v2.0_rec_train.tar) |
|
||||||
| ka_mobile_v2.0_rec | ppocr/utils/dict/ka_dict.txt | Lightweight model for Kannada recognition|rec_ka_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ka_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ka_mobile_v2.0_rec_train.tar) |
|
| ka_mobile_v2.0_rec | ppocr/utils/dict/ka_dict.txt | Lightweight model for Kannada recognition|rec_ka_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ka_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ka_mobile_v2.0_rec_train.tar) |
|
||||||
| ta_mobile_v2.0_rec | ppocr/utils/dict/ta_dict.txt | Lightweight model for Tamil recognition|rec_ta_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ta_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ta_mobile_v2.0_rec_train.tar) |
|
| ta_mobile_v2.0_rec | ppocr/utils/dict/ta_dict.txt | Lightweight model for Tamil recognition|rec_ta_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ta_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ta_mobile_v2.0_rec_train.tar) |
|
||||||
| latin_mobile_v2.0_rec | ppocr/utils/dict/latin_dict.txt | Lightweight model for latin recognition | [rec_latin_lite_train.yml](../../configs/rec/multi_language/rec_latin_lite_train.yml) |2.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/latin_ppocr_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/latin_ppocr_mobile_v2.0_rec_train.tar) |
|
| latin_mobile_v2.0_rec | ppocr/utils/dict/latin_dict.txt | Lightweight model for latin recognition | [rec_latin_lite_train.yml](../../configs/rec/multi_language/rec_latin_lite_train.yml) |2.6M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/latin_ppocr_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/latin_ppocr_mobile_v2.0_rec_train.tar) |
|
||||||
| arabic_mobile_v2.0_rec | ppocr/utils/dict/arabic_dict.txt | Lightweight model for arabic recognition | [rec_arabic_lite_train.yml](../../configs/rec/multi_language/rec_arabic_lite_train.yml) |2.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/arabic_ppocr_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/arabic_ppocr_mobile_v2.0_rec_train.tar) |
|
| arabic_mobile_v2.0_rec | ppocr/utils/dict/arabic_dict.txt | Lightweight model for arabic recognition | [rec_arabic_lite_train.yml](../../configs/rec/multi_language/rec_arabic_lite_train.yml) |2.6M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/arabic_ppocr_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/arabic_ppocr_mobile_v2.0_rec_train.tar) |
|
||||||
| cyrillic_mobile_v2.0_rec | ppocr/utils/dict/cyrillic_dict.txt | Lightweight model for cyrillic recognition | [rec_cyrillic_lite_train.yml](../../configs/rec/multi_language/rec_cyrillic_lite_train.yml) |2.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/cyrillic_ppocr_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/cyrillic_ppocr_mobile_v2.0_rec_train.tar) |
|
| cyrillic_mobile_v2.0_rec | ppocr/utils/dict/cyrillic_dict.txt | Lightweight model for cyrillic recognition | [rec_cyrillic_lite_train.yml](../../configs/rec/multi_language/rec_cyrillic_lite_train.yml) |2.6M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/cyrillic_ppocr_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/cyrillic_ppocr_mobile_v2.0_rec_train.tar) |
|
||||||
| devanagari_mobile_v2.0_rec | ppocr/utils/dict/devanagari_dict.txt | Lightweight model for devanagari recognition | [rec_devanagari_lite_train.yml](../../configs/rec/multi_language/rec_devanagari_lite_train.yml) |2.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/devanagari_ppocr_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/devanagari_ppocr_mobile_v2.0_rec_train.tar) |
|
| devanagari_mobile_v2.0_rec | ppocr/utils/dict/devanagari_dict.txt | Lightweight model for devanagari recognition | [rec_devanagari_lite_train.yml](../../configs/rec/multi_language/rec_devanagari_lite_train.yml) |2.6M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/devanagari_ppocr_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/devanagari_ppocr_mobile_v2.0_rec_train.tar) |
|
||||||
|
|
||||||
|
|
||||||
- [Python Inference](./inference_en.md)
|
|
||||||
- [C++ Inference](../../deploy/cpp_infer/readme_en.md)
|
|
||||||
- [Serving](../../deploy/hubserving/readme_en.md)
|
|
||||||
- [Mobile](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/deploy/lite/readme_en.md)
|
|
||||||
|
|
||||||
|
|
||||||
<a name="language_abbreviations"></a>
|
<a name="language_abbreviations"></a>
|
||||||
|
|
Loading…
Reference in New Issue