diff --git a/doc/doc_ch/inference.md b/doc/doc_ch/inference.md
index f9437d07..cd2de78f 100644
--- a/doc/doc_ch/inference.md
+++ b/doc/doc_ch/inference.md
@@ -128,24 +128,32 @@ python3 tools/export_model.py -c configs/cls/cls_mv3.yml -o Global.pretrained_mo
超轻量中文检测模型推理,可以执行如下命令:
```
-python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/"
+# 下载超轻量中文检测模型:
+wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
+tar xf ch_ppocr_mobile_v2.0_det_infer.tar
+python3 tools/infer/predict_det.py --image_dir="./doc/imgs/22.jpg" --det_model_dir="./ch_ppocr_mobile_v2.0_det_infer/"
```
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
-![](../imgs_results/det_res_2.jpg)
+![](../imgs_results/det_res_22.jpg)
-通过参数`limit_type`和`det_limit_side_len`来对图片的尺寸进行限制限,`limit_type=max`为限制长边长度<`det_limit_side_len`,`limit_type=min`为限制短边长度>`det_limit_side_len`,
-图片不满足限制条件时(`limit_type=max`时长边长度>`det_limit_side_len`或`limit_type=min`时短边长度<`det_limit_side_len`),将对图片进行等比例缩放。
-该参数默认设置为`limit_type='max',det_max_side_len=960`。 如果输入图片的分辨率比较大,而且想使用更大的分辨率预测,可以执行如下命令:
+通过参数`limit_type`和`det_limit_side_len`来对图片的尺寸进行限制,
+`litmit_type`可选参数为[`max`, `min`],
+`det_limit_size_len` 为正整数,一般设置为32 的倍数,比如960。
+参数默认设置为`limit_type='max', det_limit_side_len=960`。表示网络输入图像的最长边不能超过960,
+如果超过这个值,会对图像做等宽比的resize操作,确保最长边为`det_limit_side_len`。
+设置为`limit_type='min', det_limit_side_len=960` 则表示限制图像的最短边为960。
+
+如果输入图片的分辨率比较大,而且想使用更大的分辨率预测,可以设置det_limit_side_len 为想要的值,比如1216:
```
-python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1200
+python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1216
```
如果想使用CPU进行预测,执行命令如下
```
-python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --use_gpu=False
+python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --use_gpu=False
```
@@ -165,7 +173,7 @@ python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
-![](../imgs_results/det_res_img_10_db.jpg)
+![](../imgs_results/det_res_22.jpg)
**注意**:由于ICDAR2015数据集只有1000张训练图像,且主要针对英文场景,所以上述模型对中文文本图像检测效果会比较差。
diff --git a/doc/doc_en/inference_en.md b/doc/doc_en/inference_en.md
index 826aad69..012c6c7e 100644
--- a/doc/doc_en/inference_en.md
+++ b/doc/doc_en/inference_en.md
@@ -134,24 +134,33 @@ Because EAST and DB algorithms are very different, when inference, it is necessa
For lightweight Chinese detection model inference, you can execute the following commands:
```
-python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/"
+# download DB text detection inference model
+wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
+tar xf ch_ppocr_mobile_v2.0_det_infer.tar
+# predict
+python3 tools/infer/predict_det.py --image_dir="./doc/imgs/22.jpg" --det_model_dir="./inference/det_db/"
```
The visual text detection results are saved to the ./inference_results folder by default, and the name of the result file is prefixed with'det_res'. Examples of results are as follows:
-![](../imgs_results/det_res_2.jpg)
+![](../imgs_results/det_res_22.jpg)
-The size of the image is limited by the parameters `limit_type` and `det_limit_side_len`, `limit_type=max` is to limit the length of the long side <`det_limit_side_len`, and `limit_type=min` is to limit the length of the short side>`det_limit_side_len`,
-When the picture does not meet the restriction conditions (for `limit_type=max`and long side >`det_limit_side_len` or for `min` and short side <`det_limit_side_len`), the image will be scaled proportionally.
-This parameter is set to `limit_type='max', det_max_side_len=960` by default. If the resolution of the input picture is relatively large, and you want to use a larger resolution prediction, you can execute the following command:
+You can use the parameters `limit_type` and `det_limit_side_len` to limit the size of the input image,
+The optional parameters of `litmit_type` are [`max`, `min`], and
+`det_limit_size_len` is a positive integer, generally set to a multiple of 32, such as 960.
+The default setting of the parameters is `limit_type='max', det_limit_side_len=960`. Indicates that the longest side of the network input image cannot exceed 960,
+If this value is exceeded, the image will be resized with the same width ratio to ensure that the longest side is `det_limit_side_len`.
+Set as `limit_type='min', det_limit_side_len=960`, it means that the shortest side of the image is limited to 960.
+
+If the resolution of the input picture is relatively large and you want to use a larger resolution prediction, you can set det_limit_side_len to the desired value, such as 1216:
```
-python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1200
+python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2s.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1216
```
If you want to use the CPU for prediction, execute the command as follows
```
-python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --use_gpu=False
+python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2s.jpg" --det_model_dir="./inference/det_db/" --use_gpu=False
```
diff --git a/doc/imgs_results/det_res_22.jpg b/doc/imgs_results/det_res_22.jpg
new file mode 100644
index 00000000..d1255f49
Binary files /dev/null and b/doc/imgs_results/det_res_22.jpg differ