diff --git a/doc/doc_ch/algorithm_overview.md b/doc/doc_ch/algorithm_overview.md index 9c352549..e8f23b54 100755 --- a/doc/doc_ch/algorithm_overview.md +++ b/doc/doc_ch/algorithm_overview.md @@ -44,7 +44,7 @@ PaddleOCR基于动态图开源的文本识别算法列表: - [x] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))[11] - [x] RARE([paper](https://arxiv.org/abs/1603.03915v1))[12] - [x] SRN([paper](https://arxiv.org/abs/2003.12294))[5] -- [x] NRTR([paper](https://arxiv.org/abs/1806.00926v2) +- [x] NRTR([paper](https://arxiv.org/abs/1806.00926v2)) 参考[DTRB][3](https://arxiv.org/abs/1904.01906)文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下: @@ -59,7 +59,7 @@ PaddleOCR基于动态图开源的文本识别算法列表: |RARE|MobileNetV3|82.5%|rec_mv3_tps_bilstm_att |[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_att_v2.0_train.tar)| |RARE|Resnet34_vd|83.6%|rec_r34_vd_tps_bilstm_att |[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_att_v2.0_train.tar)| |SRN|Resnet50_vd_fpn| 88.52% | rec_r50fpn_vd_none_srn | [下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r50_vd_srn_train.tar) | -|NRTR|NRTR_MTB| 84.1% | rec_mtb_nrtr | [下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mtb_nrtr_train.tar) | +|NRTR|NRTR_MTB| 84.3% | rec_mtb_nrtr | [下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mtb_nrtr_train.tar) | PaddleOCR文本识别算法的训练和使用请参考文档教程中[模型训练/评估中的文本识别部分](./recognition.md)。 diff --git a/doc/doc_en/algorithm_overview_en.md b/doc/doc_en/algorithm_overview_en.md index fed9cf44..8e8f0d3f 100755 --- a/doc/doc_en/algorithm_overview_en.md +++ b/doc/doc_en/algorithm_overview_en.md @@ -46,6 +46,7 @@ PaddleOCR open-source text recognition algorithms list: - [x] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))[11] - [x] RARE([paper](https://arxiv.org/abs/1603.03915v1))[12] - [x] SRN([paper](https://arxiv.org/abs/2003.12294))[5] +- [x] NRTR([paper](https://arxiv.org/abs/1806.00926v2)) Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation result of these above text recognition (using MJSynth and SynthText for training, evaluate on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE) is as follow: @@ -60,6 +61,6 @@ Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation r |RARE|MobileNetV3|82.5%|rec_mv3_tps_bilstm_att |[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_att_v2.0_train.tar)| |RARE|Resnet34_vd|83.6%|rec_r34_vd_tps_bilstm_att |[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_att_v2.0_train.tar)| |SRN|Resnet50_vd_fpn| 88.52% | rec_r50fpn_vd_none_srn |[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r50_vd_srn_train.tar)| -|NRTR|NRTR_MTB| 84.1% | rec_mtb_nrtr | [Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mtb_nrtr_train.tar) | +|NRTR|NRTR_MTB| 84.3% | rec_mtb_nrtr | [Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mtb_nrtr_train.tar) | Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction](./recognition_en.md) diff --git a/ppocr/modeling/necks/__init__.py b/ppocr/modeling/necks/__init__.py index 1be38e93..37a5cf78 100644 --- a/ppocr/modeling/necks/__init__.py +++ b/ppocr/modeling/necks/__init__.py @@ -21,7 +21,7 @@ def build_neck(config): from .sast_fpn import SASTFPN from .rnn import SequenceEncoder from .pg_fpn import PGFPN - support_dict = ['DBFPN', 'EASTFPN', 'SASTFPN', 'SequenceEncoder', 'PGFPN','TFEncoder'] + support_dict = ['DBFPN', 'EASTFPN', 'SASTFPN', 'SequenceEncoder', 'PGFPN'] module_name = config.pop('name') assert module_name in support_dict, Exception('neck only support {}'.format( diff --git a/tools/program.py b/tools/program.py index 4b6dc9e4..71076a19 100755 --- a/tools/program.py +++ b/tools/program.py @@ -387,7 +387,7 @@ def preprocess(is_train=False): alg = config['Architecture']['algorithm'] assert alg in [ 'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN', - 'CLS', 'PGNet', 'Distillation','NRTR' + 'CLS', 'PGNet', 'Distillation', 'NRTR' ] device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu'