Merge pull request #1901 from MissPenguin/release/2.0
delete slim related content
This commit is contained in:
commit
36dae990b8
|
@ -1,61 +0,0 @@
|
||||||
|
|
||||||
## 介绍
|
|
||||||
复杂的模型有利于提高模型的性能,但也导致模型中存在一定冗余,模型量化将全精度缩减到定点数减少这种冗余,达到减少模型计算复杂度,提高模型推理性能的目的。
|
|
||||||
模型量化可以在基本不损失模型的精度的情况下,将FP32精度的模型参数转换为Int8精度,减小模型参数大小并加速计算,使用量化后的模型在移动端等部署时更具备速度优势。
|
|
||||||
|
|
||||||
本教程将介绍如何使用飞桨模型压缩库PaddleSlim做PaddleOCR模型的压缩。
|
|
||||||
[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim) 集成了模型剪枝、量化(包括量化训练和离线量化)、蒸馏和神经网络搜索等多种业界常用且领先的模型压缩功能,如果您感兴趣,可以关注并了解。
|
|
||||||
|
|
||||||
在开始本教程之前,建议先了解[PaddleOCR模型的训练方法](../../../doc/doc_ch/quickstart.md)以及[PaddleSlim](https://paddleslim.readthedocs.io/zh_CN/latest/index.html)
|
|
||||||
|
|
||||||
|
|
||||||
## 快速开始
|
|
||||||
量化多适用于轻量模型在移动端的部署,当训练出一个模型后,如果希望进一步的压缩模型大小并加速预测,可使用量化的方法压缩模型。
|
|
||||||
|
|
||||||
模型量化主要包括五个步骤:
|
|
||||||
1. 安装 PaddleSlim
|
|
||||||
2. 准备训练好的模型
|
|
||||||
3. 量化训练
|
|
||||||
4. 导出量化推理模型
|
|
||||||
5. 量化模型预测部署
|
|
||||||
|
|
||||||
### 1. 安装PaddleSlim
|
|
||||||
|
|
||||||
```bash
|
|
||||||
git clone https://github.com/PaddlePaddle/PaddleSlim.git
|
|
||||||
cd Paddleslim
|
|
||||||
python setup.py install
|
|
||||||
```
|
|
||||||
|
|
||||||
### 2. 准备训练好的模型
|
|
||||||
|
|
||||||
PaddleOCR提供了一系列训练好的[模型](../../../doc/doc_ch/models_list.md),如果待量化的模型不在列表中,需要按照[常规训练](../../../doc/doc_ch/quickstart.md)方法得到训练好的模型。
|
|
||||||
|
|
||||||
### 3. 量化训练
|
|
||||||
量化训练包括离线量化训练和在线量化训练,在线量化训练效果更好,需加载预训练模型,在定义好量化策略后即可对模型进行量化。
|
|
||||||
|
|
||||||
|
|
||||||
量化训练的代码位于slim/quantization/quant.py 中,比如训练检测模型,训练指令如下:
|
|
||||||
```bash
|
|
||||||
python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights='your trained model' Global.save_model_dir=./output/quant_model
|
|
||||||
|
|
||||||
# 比如下载提供的训练模型
|
|
||||||
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar
|
|
||||||
tar -xf ch_ppocr_mobile_v2.0_det_train.tar
|
|
||||||
python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights=./ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.save_inference_dir=./output/quant_inference_model
|
|
||||||
|
|
||||||
```
|
|
||||||
如果要训练识别模型的量化,修改配置文件和加载的模型参数即可。
|
|
||||||
|
|
||||||
### 4. 导出模型
|
|
||||||
|
|
||||||
在得到量化训练保存的模型后,我们可以将其导出为inference_model,用于预测部署:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
python deploy/slim/quantization/export_model.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=output/quant_model/best_accuracy Global.save_model_dir=./output/quant_inference_model
|
|
||||||
```
|
|
||||||
|
|
||||||
### 5. 量化模型部署
|
|
||||||
|
|
||||||
上述步骤导出的量化模型,参数精度仍然是FP32,但是参数的数值范围是int8,导出的模型可以通过PaddleLite的opt模型转换工具完成模型转换。
|
|
||||||
量化模型部署的可参考 [移动端模型部署](../../lite/readme.md)
|
|
|
@ -1,68 +0,0 @@
|
||||||
|
|
||||||
## Introduction
|
|
||||||
|
|
||||||
Generally, a more complex model would achive better performance in the task, but it also leads to some redundancy in the model.
|
|
||||||
Quantization is a technique that reduces this redundancy by reducing the full precision data to a fixed number,
|
|
||||||
so as to reduce model calculation complexity and improve model inference performance.
|
|
||||||
|
|
||||||
This example uses PaddleSlim provided [APIs of Quantization](https://paddlepaddle.github.io/PaddleSlim/api/quantization_api/) to compress the OCR model.
|
|
||||||
|
|
||||||
It is recommended that you could understand following pages before reading this example:
|
|
||||||
- [The training strategy of OCR model](../../../doc/doc_en/quickstart_en.md)
|
|
||||||
- [PaddleSlim Document](https://paddlepaddle.github.io/PaddleSlim/api/quantization_api/)
|
|
||||||
|
|
||||||
## Quick Start
|
|
||||||
Quantization is mostly suitable for the deployment of lightweight models on mobile terminals.
|
|
||||||
After training, if you want to further compress the model size and accelerate the prediction, you can use quantization methods to compress the model according to the following steps.
|
|
||||||
|
|
||||||
1. Install PaddleSlim
|
|
||||||
2. Prepare trained model
|
|
||||||
3. Quantization-Aware Training
|
|
||||||
4. Export inference model
|
|
||||||
5. Deploy quantization inference model
|
|
||||||
|
|
||||||
|
|
||||||
### 1. Install PaddleSlim
|
|
||||||
|
|
||||||
```bash
|
|
||||||
git clone https://github.com/PaddlePaddle/PaddleSlim.git
|
|
||||||
cd Paddleslim
|
|
||||||
python setup.py install
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
### 2. Download Pretrain Model
|
|
||||||
PaddleOCR provides a series of trained [models](../../../doc/doc_en/models_list_en.md).
|
|
||||||
If the model to be quantified is not in the list, you need to follow the [Regular Training](../../../doc/doc_en/quickstart_en.md) method to get the trained model.
|
|
||||||
|
|
||||||
|
|
||||||
### 3. Quant-Aware Training
|
|
||||||
Quantization training includes offline quantization training and online quantization training.
|
|
||||||
Online quantization training is more effective. It is necessary to load the pre-training model.
|
|
||||||
After the quantization strategy is defined, the model can be quantified.
|
|
||||||
|
|
||||||
The code for quantization training is located in `slim/quantization/quant.py`. For example, to train a detection model, the training instructions are as follows:
|
|
||||||
```bash
|
|
||||||
python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights='your trained model' Global.save_model_dir=./output/quant_model
|
|
||||||
|
|
||||||
# download provided model
|
|
||||||
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar
|
|
||||||
tar -xf ch_ppocr_mobile_v2.0_det_train.tar
|
|
||||||
python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights=./ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.save_model_dir=./output/quant_model
|
|
||||||
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
### 4. Export inference model
|
|
||||||
|
|
||||||
After getting the model after pruning and finetuning we, can export it as inference_model for predictive deployment:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
python deploy/slim/quantization/export_model.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=output/quant_model/best_accuracy Global.save_inference_dir=./output/quant_inference_model
|
|
||||||
```
|
|
||||||
|
|
||||||
### 5. Deploy
|
|
||||||
The numerical range of the quantized model parameters derived from the above steps is still FP32, but the numerical range of the parameters is int8.
|
|
||||||
The derived model can be converted through the `opt tool` of PaddleLite.
|
|
||||||
|
|
||||||
For quantitative model deployment, please refer to [Mobile terminal model deployment](../../lite/readme_en.md)
|
|
|
@ -1,118 +0,0 @@
|
||||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
import os
|
|
||||||
import sys
|
|
||||||
|
|
||||||
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
|
||||||
sys.path.append(__dir__)
|
|
||||||
sys.path.append(os.path.abspath(os.path.join(__dir__, '..', '..', '..')))
|
|
||||||
sys.path.append(
|
|
||||||
os.path.abspath(os.path.join(__dir__, '..', '..', '..', 'tools')))
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
|
|
||||||
import paddle
|
|
||||||
from paddle.jit import to_static
|
|
||||||
|
|
||||||
from ppocr.modeling.architectures import build_model
|
|
||||||
from ppocr.postprocess import build_post_process
|
|
||||||
from ppocr.utils.save_load import init_model
|
|
||||||
from ppocr.utils.logging import get_logger
|
|
||||||
from tools.program import load_config, merge_config, ArgsParser
|
|
||||||
from ppocr.metrics import build_metric
|
|
||||||
import tools.program as program
|
|
||||||
from paddleslim.dygraph.quant import QAT
|
|
||||||
from ppocr.data import build_dataloader
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
############################################################################################################
|
|
||||||
# 1. quantization configs
|
|
||||||
############################################################################################################
|
|
||||||
quant_config = {
|
|
||||||
# weight preprocess type, default is None and no preprocessing is performed.
|
|
||||||
'weight_preprocess_type': None,
|
|
||||||
# activation preprocess type, default is None and no preprocessing is performed.
|
|
||||||
'activation_preprocess_type': None,
|
|
||||||
# weight quantize type, default is 'channel_wise_abs_max'
|
|
||||||
'weight_quantize_type': 'channel_wise_abs_max',
|
|
||||||
# activation quantize type, default is 'moving_average_abs_max'
|
|
||||||
'activation_quantize_type': 'moving_average_abs_max',
|
|
||||||
# weight quantize bit num, default is 8
|
|
||||||
'weight_bits': 8,
|
|
||||||
# activation quantize bit num, default is 8
|
|
||||||
'activation_bits': 8,
|
|
||||||
# data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
|
|
||||||
'dtype': 'int8',
|
|
||||||
# window size for 'range_abs_max' quantization. default is 10000
|
|
||||||
'window_size': 10000,
|
|
||||||
# The decay coefficient of moving average, default is 0.9
|
|
||||||
'moving_rate': 0.9,
|
|
||||||
# for dygraph quantization, layers of type in quantizable_layer_type will be quantized
|
|
||||||
'quantizable_layer_type': ['Conv2D', 'Linear'],
|
|
||||||
}
|
|
||||||
FLAGS = ArgsParser().parse_args()
|
|
||||||
config = load_config(FLAGS.config)
|
|
||||||
merge_config(FLAGS.opt)
|
|
||||||
logger = get_logger()
|
|
||||||
# build post process
|
|
||||||
|
|
||||||
post_process_class = build_post_process(config['PostProcess'],
|
|
||||||
config['Global'])
|
|
||||||
|
|
||||||
# build model
|
|
||||||
# for rec algorithm
|
|
||||||
if hasattr(post_process_class, 'character'):
|
|
||||||
char_num = len(getattr(post_process_class, 'character'))
|
|
||||||
config['Architecture']["Head"]['out_channels'] = char_num
|
|
||||||
model = build_model(config['Architecture'])
|
|
||||||
|
|
||||||
# get QAT model
|
|
||||||
quanter = QAT(config=quant_config)
|
|
||||||
quanter.quantize(model)
|
|
||||||
|
|
||||||
init_model(config, model, logger)
|
|
||||||
model.eval()
|
|
||||||
|
|
||||||
# build metric
|
|
||||||
eval_class = build_metric(config['Metric'])
|
|
||||||
|
|
||||||
# build dataloader
|
|
||||||
valid_dataloader = build_dataloader(config, 'Eval', device, logger)
|
|
||||||
|
|
||||||
# start eval
|
|
||||||
metirc = program.eval(model, valid_dataloader, post_process_class,
|
|
||||||
eval_class)
|
|
||||||
logger.info('metric eval ***************')
|
|
||||||
for k, v in metirc.items():
|
|
||||||
logger.info('{}:{}'.format(k, v))
|
|
||||||
|
|
||||||
save_path = '{}/inference'.format(config['Global']['save_inference_dir'])
|
|
||||||
infer_shape = [3, 32, 100] if config['Architecture'][
|
|
||||||
'model_type'] != "det" else [3, 640, 640]
|
|
||||||
|
|
||||||
quanter.save_quantized_model(
|
|
||||||
model,
|
|
||||||
save_path,
|
|
||||||
input_spec=[
|
|
||||||
paddle.static.InputSpec(
|
|
||||||
shape=[None] + infer_shape, dtype='float32')
|
|
||||||
])
|
|
||||||
logger.info('inference QAT model is saved to {}'.format(save_path))
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
config, device, logger, vdl_writer = program.preprocess()
|
|
||||||
main()
|
|
|
@ -1,166 +0,0 @@
|
||||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
from __future__ import absolute_import
|
|
||||||
from __future__ import division
|
|
||||||
from __future__ import print_function
|
|
||||||
|
|
||||||
import os
|
|
||||||
import sys
|
|
||||||
|
|
||||||
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
|
||||||
sys.path.append(__dir__)
|
|
||||||
sys.path.append(os.path.abspath(os.path.join(__dir__, '..', '..', '..')))
|
|
||||||
sys.path.append(
|
|
||||||
os.path.abspath(os.path.join(__dir__, '..', '..', '..', 'tools')))
|
|
||||||
|
|
||||||
import yaml
|
|
||||||
import paddle
|
|
||||||
import paddle.distributed as dist
|
|
||||||
|
|
||||||
paddle.seed(2)
|
|
||||||
|
|
||||||
from ppocr.data import build_dataloader
|
|
||||||
from ppocr.modeling.architectures import build_model
|
|
||||||
from ppocr.losses import build_loss
|
|
||||||
from ppocr.optimizer import build_optimizer
|
|
||||||
from ppocr.postprocess import build_post_process
|
|
||||||
from ppocr.metrics import build_metric
|
|
||||||
from ppocr.utils.save_load import init_model
|
|
||||||
import tools.program as program
|
|
||||||
from paddleslim.dygraph.quant import QAT
|
|
||||||
|
|
||||||
dist.get_world_size()
|
|
||||||
|
|
||||||
|
|
||||||
class PACT(paddle.nn.Layer):
|
|
||||||
def __init__(self):
|
|
||||||
super(PACT, self).__init__()
|
|
||||||
alpha_attr = paddle.ParamAttr(
|
|
||||||
name=self.full_name() + ".pact",
|
|
||||||
initializer=paddle.nn.initializer.Constant(value=20),
|
|
||||||
learning_rate=1.0,
|
|
||||||
regularizer=paddle.regularizer.L2Decay(2e-5))
|
|
||||||
|
|
||||||
self.alpha = self.create_parameter(
|
|
||||||
shape=[1], attr=alpha_attr, dtype='float32')
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
out_left = paddle.nn.functional.relu(x - self.alpha)
|
|
||||||
out_right = paddle.nn.functional.relu(-self.alpha - x)
|
|
||||||
x = x - out_left + out_right
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
quant_config = {
|
|
||||||
# weight preprocess type, default is None and no preprocessing is performed.
|
|
||||||
'weight_preprocess_type': None,
|
|
||||||
# activation preprocess type, default is None and no preprocessing is performed.
|
|
||||||
'activation_preprocess_type': None,
|
|
||||||
# weight quantize type, default is 'channel_wise_abs_max'
|
|
||||||
'weight_quantize_type': 'channel_wise_abs_max',
|
|
||||||
# activation quantize type, default is 'moving_average_abs_max'
|
|
||||||
'activation_quantize_type': 'moving_average_abs_max',
|
|
||||||
# weight quantize bit num, default is 8
|
|
||||||
'weight_bits': 8,
|
|
||||||
# activation quantize bit num, default is 8
|
|
||||||
'activation_bits': 8,
|
|
||||||
# data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
|
|
||||||
'dtype': 'int8',
|
|
||||||
# window size for 'range_abs_max' quantization. default is 10000
|
|
||||||
'window_size': 10000,
|
|
||||||
# The decay coefficient of moving average, default is 0.9
|
|
||||||
'moving_rate': 0.9,
|
|
||||||
# for dygraph quantization, layers of type in quantizable_layer_type will be quantized
|
|
||||||
'quantizable_layer_type': ['Conv2D', 'Linear'],
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
def main(config, device, logger, vdl_writer):
|
|
||||||
# init dist environment
|
|
||||||
if config['Global']['distributed']:
|
|
||||||
dist.init_parallel_env()
|
|
||||||
|
|
||||||
global_config = config['Global']
|
|
||||||
|
|
||||||
# build dataloader
|
|
||||||
train_dataloader = build_dataloader(config, 'Train', device, logger)
|
|
||||||
if config['Eval']:
|
|
||||||
valid_dataloader = build_dataloader(config, 'Eval', device, logger)
|
|
||||||
else:
|
|
||||||
valid_dataloader = None
|
|
||||||
|
|
||||||
# build post process
|
|
||||||
post_process_class = build_post_process(config['PostProcess'],
|
|
||||||
global_config)
|
|
||||||
|
|
||||||
# build model
|
|
||||||
# for rec algorithm
|
|
||||||
if hasattr(post_process_class, 'character'):
|
|
||||||
char_num = len(getattr(post_process_class, 'character'))
|
|
||||||
config['Architecture']["Head"]['out_channels'] = char_num
|
|
||||||
model = build_model(config['Architecture'])
|
|
||||||
|
|
||||||
# prepare to quant
|
|
||||||
quanter = QAT(config=quant_config, act_preprocess=PACT)
|
|
||||||
quanter.quantize(model)
|
|
||||||
|
|
||||||
if config['Global']['distributed']:
|
|
||||||
model = paddle.DataParallel(model)
|
|
||||||
|
|
||||||
# build loss
|
|
||||||
loss_class = build_loss(config['Loss'])
|
|
||||||
|
|
||||||
# build optim
|
|
||||||
optimizer, lr_scheduler = build_optimizer(
|
|
||||||
config['Optimizer'],
|
|
||||||
epochs=config['Global']['epoch_num'],
|
|
||||||
step_each_epoch=len(train_dataloader),
|
|
||||||
parameters=model.parameters())
|
|
||||||
|
|
||||||
# build metric
|
|
||||||
eval_class = build_metric(config['Metric'])
|
|
||||||
# load pretrain model
|
|
||||||
pre_best_model_dict = init_model(config, model, logger, optimizer)
|
|
||||||
|
|
||||||
logger.info('train dataloader has {} iters, valid dataloader has {} iters'.
|
|
||||||
format(len(train_dataloader), len(valid_dataloader)))
|
|
||||||
# start train
|
|
||||||
program.train(config, train_dataloader, valid_dataloader, device, model,
|
|
||||||
loss_class, optimizer, lr_scheduler, post_process_class,
|
|
||||||
eval_class, pre_best_model_dict, logger, vdl_writer)
|
|
||||||
|
|
||||||
|
|
||||||
def test_reader(config, device, logger):
|
|
||||||
loader = build_dataloader(config, 'Train', device, logger)
|
|
||||||
import time
|
|
||||||
starttime = time.time()
|
|
||||||
count = 0
|
|
||||||
try:
|
|
||||||
for data in loader():
|
|
||||||
count += 1
|
|
||||||
if count % 1 == 0:
|
|
||||||
batch_time = time.time() - starttime
|
|
||||||
starttime = time.time()
|
|
||||||
logger.info("reader: {}, {}, {}".format(
|
|
||||||
count, len(data[0]), batch_time))
|
|
||||||
except Exception as e:
|
|
||||||
logger.info(e)
|
|
||||||
logger.info("finish reader: {}, Success!".format(count))
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
config, device, logger, vdl_writer = program.preprocess(is_train=True)
|
|
||||||
main(config, device, logger, vdl_writer)
|
|
||||||
# test_reader(config, device, logger)
|
|
|
@ -14,15 +14,12 @@ PaddleOCR提供的可下载模型包括`推理模型`、`训练模型`、`预训
|
||||||
|--- | --- | --- |
|
|--- | --- | --- |
|
||||||
|推理模型|inference.pdmodel、inference.pdiparams|用于python预测引擎推理,[详情](./inference.md)|
|
|推理模型|inference.pdmodel、inference.pdiparams|用于python预测引擎推理,[详情](./inference.md)|
|
||||||
|训练模型、预训练模型|\*.pdparams、\*.pdopt、\*.states |训练过程中保存的模型的参数、优化器状态和训练中间信息,多用于模型指标评估和恢复训练|
|
|训练模型、预训练模型|\*.pdparams、\*.pdopt、\*.states |训练过程中保存的模型的参数、优化器状态和训练中间信息,多用于模型指标评估和恢复训练|
|
||||||
|slim模型|\*.nb|用于lite部署|
|
|
||||||
|
|
||||||
|
|
||||||
<a name="文本检测模型"></a>
|
<a name="文本检测模型"></a>
|
||||||
### 一、文本检测模型
|
### 一、文本检测模型
|
||||||
|
|
||||||
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
|
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
|
||||||
| --- | --- | --- | --- | --- |
|
| --- | --- | --- | --- | --- |
|
||||||
|ch_ppocr_mobile_slim_v2.0_det|slim裁剪版超轻量模型,支持中英文、多语种文本检测|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)| |推理模型 (coming soon) / 训练模型 (coming soon)|
|
|
||||||
|ch_ppocr_mobile_v2.0_det|原始超轻量模型,支持中英文、多语种文本检测|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)|3M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|
|
|ch_ppocr_mobile_v2.0_det|原始超轻量模型,支持中英文、多语种文本检测|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)|3M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|
|
||||||
|ch_ppocr_server_v2.0_det|通用模型,支持中英文、多语种文本检测,比超轻量模型更大,但效果更好|[ch_det_res18_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_res18_db_v2.0.yml)|47M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar)|
|
|ch_ppocr_server_v2.0_det|通用模型,支持中英文、多语种文本检测,比超轻量模型更大,但效果更好|[ch_det_res18_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_res18_db_v2.0.yml)|47M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar)|
|
||||||
|
|
||||||
|
@ -35,7 +32,6 @@ PaddleOCR提供的可下载模型包括`推理模型`、`训练模型`、`预训
|
||||||
|
|
||||||
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
|
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
|
||||||
| --- | --- | --- | --- | --- |
|
| --- | --- | --- | --- | --- |
|
||||||
|ch_ppocr_mobile_slim_v2.0_rec|slim裁剪量化版超轻量模型,支持中英文、数字识别|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)| |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_train.tar) |
|
|
||||||
|ch_ppocr_mobile_v2.0_rec|原始超轻量模型,支持中英文、数字识别|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)|3.71M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
|
|ch_ppocr_mobile_v2.0_rec|原始超轻量模型,支持中英文、数字识别|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)|3.71M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
|
||||||
|ch_ppocr_server_v2.0_rec|通用模型,支持中英文、数字识别|[rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml)|94.8M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
|
|ch_ppocr_server_v2.0_rec|通用模型,支持中英文、数字识别|[rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml)|94.8M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
|
||||||
|
|
||||||
|
@ -46,7 +42,6 @@ PaddleOCR提供的可下载模型包括`推理模型`、`训练模型`、`预训
|
||||||
|
|
||||||
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
|
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
|
||||||
| --- | --- | --- | --- | --- |
|
| --- | --- | --- | --- | --- |
|
||||||
|en_number_mobile_slim_v2.0_rec|slim裁剪量化版超轻量模型,支持英文、数字识别|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)| | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/en_number_mobile_v2.0_rec_slim_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/en_number_mobile_v2.0_rec_slim_train.tar) |
|
|
||||||
|en_number_mobile_v2.0_rec|原始超轻量模型,支持英文、数字识别|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)|2.56M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_train.tar) |
|
|en_number_mobile_v2.0_rec|原始超轻量模型,支持英文、数字识别|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)|2.56M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_train.tar) |
|
||||||
|
|
||||||
<a name="多语言识别模型"></a>
|
<a name="多语言识别模型"></a>
|
||||||
|
@ -123,5 +118,4 @@ python3 generate_multi_language_configs.py -l it \
|
||||||
|
|
||||||
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
|
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
|
||||||
| --- | --- | --- | --- | --- |
|
| --- | --- | --- | --- | --- |
|
||||||
|ch_ppocr_mobile_slim_v2.0_cls|slim量化版模型|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)| |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_slim_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_infer.tar) |
|
|
||||||
|ch_ppocr_mobile_v2.0_cls|原始模型|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)|1.38M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |
|
|ch_ppocr_mobile_v2.0_cls|原始模型|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)|1.38M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |
|
||||||
|
|
|
@ -14,14 +14,12 @@ The downloadable models provided by PaddleOCR include `inference model`, `traine
|
||||||
|--- | --- | --- |
|
|--- | --- | --- |
|
||||||
|inference model|inference.pdmodel、inference.pdiparams|Used for reasoning based on Python prediction engine,[detail](./inference_en.md)|
|
|inference model|inference.pdmodel、inference.pdiparams|Used for reasoning based on Python prediction engine,[detail](./inference_en.md)|
|
||||||
|trained model, pre-trained model|\*.pdparams、\*.pdopt、\*.states |The checkpoints model saved in the training process, which stores the parameters of the model, mostly used for model evaluation and continuous training.|
|
|trained model, pre-trained model|\*.pdparams、\*.pdopt、\*.states |The checkpoints model saved in the training process, which stores the parameters of the model, mostly used for model evaluation and continuous training.|
|
||||||
|slim model|\*.nb|Generally used for Lite deployment|
|
|
||||||
|
|
||||||
<a name="Detection"></a>
|
<a name="Detection"></a>
|
||||||
### 1. Text Detection Model
|
### 1. Text Detection Model
|
||||||
|
|
||||||
|model name|description|config|model size|download|
|
|model name|description|config|model size|download|
|
||||||
| --- | --- | --- | --- | --- |
|
| --- | --- | --- | --- | --- |
|
||||||
|ch_ppocr_mobile_slim_v2.0_det|Slim pruned lightweight model, supporting Chinese, English, multilingual text detection|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)| |inference model (coming soon) / slim model (coming soon)|
|
|
||||||
|ch_ppocr_mobile_v2.0_det|Original lightweight model, supporting Chinese, English, multilingual text detection|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)|3M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|
|
|ch_ppocr_mobile_v2.0_det|Original lightweight model, supporting Chinese, English, multilingual text detection|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)|3M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|
|
||||||
|ch_ppocr_server_v2.0_det|General model, which is larger than the lightweight model, but achieved better performance|[ch_det_res18_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_res18_db_v2.0.yml)|47M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar)|
|
|ch_ppocr_server_v2.0_det|General model, which is larger than the lightweight model, but achieved better performance|[ch_det_res18_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_res18_db_v2.0.yml)|47M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar)|
|
||||||
|
|
||||||
|
@ -33,7 +31,6 @@ The downloadable models provided by PaddleOCR include `inference model`, `traine
|
||||||
|
|
||||||
|model name|description|config|model size|download|
|
|model name|description|config|model size|download|
|
||||||
| --- | --- | --- | --- | --- |
|
| --- | --- | --- | --- | --- |
|
||||||
|ch_ppocr_mobile_slim_v2.0_rec|Slim pruned and quantized lightweight model, supporting Chinese, English and number recognition|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)| | [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_train.tar) |
|
|
||||||
|ch_ppocr_mobile_v2.0_rec|Original lightweight model, supporting Chinese, English and number recognition|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)|3.71M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
|
|ch_ppocr_mobile_v2.0_rec|Original lightweight model, supporting Chinese, English and number recognition|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)|3.71M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
|
||||||
|ch_ppocr_server_v2.0_rec|General model, supporting Chinese, English and number recognition|[rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml)|94.8M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
|
|ch_ppocr_server_v2.0_rec|General model, supporting Chinese, English and number recognition|[rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml)|94.8M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
|
||||||
|
|
||||||
|
@ -45,7 +42,6 @@ The downloadable models provided by PaddleOCR include `inference model`, `traine
|
||||||
|
|
||||||
|model name|description|config|model size|download|
|
|model name|description|config|model size|download|
|
||||||
| --- | --- | --- | --- | --- |
|
| --- | --- | --- | --- | --- |
|
||||||
|en_number_mobile_slim_v2.0_rec|Slim pruned and quantized lightweight model, supporting English and number recognition|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)| | [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/en_number_mobile_v2.0_rec_slim_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/en_number_mobile_v2.0_rec_slim_train.tar) |
|
|
||||||
|en_number_mobile_v2.0_rec|Original lightweight model, supporting English and number recognition|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)|2.56M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_train.tar) |
|
|en_number_mobile_v2.0_rec|Original lightweight model, supporting English and number recognition|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)|2.56M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_train.tar) |
|
||||||
|
|
||||||
<a name="Multilingual"></a>
|
<a name="Multilingual"></a>
|
||||||
|
@ -124,5 +120,4 @@ python3 generate_multi_language_configs.py -l it \
|
||||||
|
|
||||||
|model name|description|config|model size|download|
|
|model name|description|config|model size|download|
|
||||||
| --- | --- | --- | --- | --- |
|
| --- | --- | --- | --- | --- |
|
||||||
|ch_ppocr_mobile_slim_v2.0_cls|Slim quantized model|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)| | [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_slim_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_slim_train.tar) |
|
|
||||||
|ch_ppocr_mobile_v2.0_cls|Original model|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)|1.38M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |
|
|ch_ppocr_mobile_v2.0_cls|Original model|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)|1.38M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |
|
||||||
|
|
Loading…
Reference in New Issue