merge upstream
This commit is contained in:
commit
38f27a5339
|
@ -32,12 +32,10 @@ class SimpleDataSet(Dataset):
|
|||
self.delimiter = dataset_config.get('delimiter', '\t')
|
||||
label_file_list = dataset_config.pop('label_file_list')
|
||||
data_source_num = len(label_file_list)
|
||||
if data_source_num == 1:
|
||||
ratio_list = [1.0]
|
||||
else:
|
||||
ratio_list = dataset_config.pop('ratio_list')
|
||||
ratio_list = dataset_config.get("ratio_list", [1.0])
|
||||
if isinstance(ratio_list, (float, int)):
|
||||
ratio_list = [float(ratio_list)] * len(data_source_num)
|
||||
|
||||
assert sum(ratio_list) == 1, "The sum of the ratio_list should be 1."
|
||||
assert len(
|
||||
ratio_list
|
||||
) == data_source_num, "The length of ratio_list should be the same as the file_list."
|
||||
|
@ -45,62 +43,32 @@ class SimpleDataSet(Dataset):
|
|||
self.do_shuffle = loader_config['shuffle']
|
||||
|
||||
logger.info("Initialize indexs of datasets:%s" % label_file_list)
|
||||
self.data_lines_list, data_num_list = self.get_image_info_list(
|
||||
label_file_list)
|
||||
self.data_idx_order_list = self.dataset_traversal(
|
||||
data_num_list, ratio_list, batch_size)
|
||||
self.shuffle_data_random()
|
||||
|
||||
self.data_lines = self.get_image_info_list(label_file_list, ratio_list)
|
||||
self.data_idx_order_list = list(range(len(self.data_lines)))
|
||||
if mode.lower() == "train":
|
||||
self.shuffle_data_random()
|
||||
self.ops = create_operators(dataset_config['transforms'], global_config)
|
||||
|
||||
def get_image_info_list(self, file_list):
|
||||
def get_image_info_list(self, file_list, ratio_list):
|
||||
if isinstance(file_list, str):
|
||||
file_list = [file_list]
|
||||
data_lines_list = []
|
||||
data_num_list = []
|
||||
for file in file_list:
|
||||
data_lines = []
|
||||
for idx, file in enumerate(file_list):
|
||||
with open(file, "rb") as f:
|
||||
lines = f.readlines()
|
||||
data_lines_list.append(lines)
|
||||
data_num_list.append(len(lines))
|
||||
return data_lines_list, data_num_list
|
||||
|
||||
def dataset_traversal(self, data_num_list, ratio_list, batch_size):
|
||||
select_num_list = []
|
||||
dataset_num = len(data_num_list)
|
||||
for dno in range(dataset_num):
|
||||
select_num = round(batch_size * ratio_list[dno])
|
||||
select_num = max(select_num, 1)
|
||||
select_num_list.append(select_num)
|
||||
data_idx_order_list = []
|
||||
cur_index_sets = [0] * dataset_num
|
||||
while True:
|
||||
finish_read_num = 0
|
||||
for dataset_idx in range(dataset_num):
|
||||
cur_index = cur_index_sets[dataset_idx]
|
||||
if cur_index >= data_num_list[dataset_idx]:
|
||||
finish_read_num += 1
|
||||
else:
|
||||
select_num = select_num_list[dataset_idx]
|
||||
for sno in range(select_num):
|
||||
cur_index = cur_index_sets[dataset_idx]
|
||||
if cur_index >= data_num_list[dataset_idx]:
|
||||
break
|
||||
data_idx_order_list.append((dataset_idx, cur_index))
|
||||
cur_index_sets[dataset_idx] += 1
|
||||
if finish_read_num == dataset_num:
|
||||
break
|
||||
return data_idx_order_list
|
||||
lines = random.sample(lines,
|
||||
round(len(lines) * ratio_list[idx]))
|
||||
data_lines.extend(lines)
|
||||
return data_lines
|
||||
|
||||
def shuffle_data_random(self):
|
||||
if self.do_shuffle:
|
||||
for dno in range(len(self.data_lines_list)):
|
||||
random.shuffle(self.data_lines_list[dno])
|
||||
random.shuffle(self.data_lines)
|
||||
return
|
||||
|
||||
def __getitem__(self, idx):
|
||||
dataset_idx, file_idx = self.data_idx_order_list[idx]
|
||||
data_line = self.data_lines_list[dataset_idx][file_idx]
|
||||
file_idx = self.data_idx_order_list[idx]
|
||||
data_line = self.data_lines[file_idx]
|
||||
try:
|
||||
data_line = data_line.decode('utf-8')
|
||||
substr = data_line.strip("\n").split(self.delimiter)
|
||||
|
|
|
@ -23,7 +23,7 @@ import copy
|
|||
import numpy as np
|
||||
import math
|
||||
import time
|
||||
|
||||
import traceback
|
||||
import paddle.fluid as fluid
|
||||
|
||||
import tools.infer.utility as utility
|
||||
|
@ -106,10 +106,10 @@ class TextClassifier(object):
|
|||
norm_img_batch = fluid.core.PaddleTensor(norm_img_batch)
|
||||
self.predictor.run([norm_img_batch])
|
||||
prob_out = self.output_tensors[0].copy_to_cpu()
|
||||
cls_res = self.postprocess_op(prob_out)
|
||||
cls_result = self.postprocess_op(prob_out)
|
||||
elapse += time.time() - starttime
|
||||
for rno in range(len(cls_res)):
|
||||
label, score = cls_res[rno]
|
||||
for rno in range(len(cls_result)):
|
||||
label, score = cls_result[rno]
|
||||
cls_res[indices[beg_img_no + rno]] = [label, score]
|
||||
if '180' in label and score > self.cls_thresh:
|
||||
img_list[indices[beg_img_no + rno]] = cv2.rotate(
|
||||
|
@ -133,8 +133,8 @@ def main(args):
|
|||
img_list.append(img)
|
||||
try:
|
||||
img_list, cls_res, predict_time = text_classifier(img_list)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
except:
|
||||
logger.info(traceback.format_exc())
|
||||
logger.info(
|
||||
"ERROR!!!! \n"
|
||||
"Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
|
||||
|
@ -143,10 +143,10 @@ def main(args):
|
|||
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
|
||||
exit()
|
||||
for ino in range(len(img_list)):
|
||||
print("Predicts of {}:{}".format(valid_image_file_list[ino], cls_res[
|
||||
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino], cls_res[
|
||||
ino]))
|
||||
print("Total predict time for {} images, cost: {:.3f}".format(
|
||||
logger.info("Total predict time for {} images, cost: {:.3f}".format(
|
||||
len(img_list), predict_time))
|
||||
|
||||
if __name__ == "__main__":
|
||||
main(utility.parse_args())
|
||||
if __name__ == "__main__":
|
||||
main(utility.parse_args())
|
||||
|
|
|
@ -178,11 +178,12 @@ if __name__ == "__main__":
|
|||
if count > 0:
|
||||
total_time += elapse
|
||||
count += 1
|
||||
print("Predict time of {}: {}".format(image_file, elapse))
|
||||
logger.info("Predict time of {}: {}".format(image_file, elapse))
|
||||
src_im = utility.draw_text_det_res(dt_boxes, image_file)
|
||||
img_name_pure = os.path.split(image_file)[-1]
|
||||
img_path = os.path.join(draw_img_save,
|
||||
"det_res_{}".format(img_name_pure))
|
||||
cv2.imwrite(img_path, src_im)
|
||||
logger.info("The visualized image saved in {}".format(img_path))
|
||||
if count > 1:
|
||||
print("Avg Time:", total_time / (count - 1))
|
||||
logger.info("Avg Time:", total_time / (count - 1))
|
||||
|
|
|
@ -22,7 +22,7 @@ import cv2
|
|||
import numpy as np
|
||||
import math
|
||||
import time
|
||||
|
||||
import traceback
|
||||
import paddle.fluid as fluid
|
||||
|
||||
import tools.infer.utility as utility
|
||||
|
@ -135,8 +135,8 @@ def main(args):
|
|||
img_list.append(img)
|
||||
try:
|
||||
rec_res, predict_time = text_recognizer(img_list)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
except:
|
||||
logger.info(traceback.format_exc())
|
||||
logger.info(
|
||||
"ERROR!!!! \n"
|
||||
"Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
|
||||
|
@ -145,9 +145,9 @@ def main(args):
|
|||
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
|
||||
exit()
|
||||
for ino in range(len(img_list)):
|
||||
print("Predicts of {}:{}".format(valid_image_file_list[ino], rec_res[
|
||||
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino], rec_res[
|
||||
ino]))
|
||||
print("Total predict time for {} images, cost: {:.3f}".format(
|
||||
logger.info("Total predict time for {} images, cost: {:.3f}".format(
|
||||
len(img_list), predict_time))
|
||||
|
||||
|
||||
|
|
|
@ -23,17 +23,21 @@ import numpy as np
|
|||
import time
|
||||
from PIL import Image
|
||||
import tools.infer.utility as utility
|
||||
from tools.infer.utility import draw_ocr
|
||||
import tools.infer.predict_rec as predict_rec
|
||||
import tools.infer.predict_det as predict_det
|
||||
import tools.infer.predict_cls as predict_cls
|
||||
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
|
||||
from ppocr.utils.logging import get_logger
|
||||
from tools.infer.utility import draw_ocr_box_txt
|
||||
|
||||
|
||||
class TextSystem(object):
|
||||
def __init__(self, args):
|
||||
self.text_detector = predict_det.TextDetector(args)
|
||||
self.text_recognizer = predict_rec.TextRecognizer(args)
|
||||
self.use_angle_cls = args.use_angle_cls
|
||||
if self.use_angle_cls:
|
||||
self.text_classifier = predict_cls.TextClassifier(args)
|
||||
|
||||
def get_rotate_crop_image(self, img, points):
|
||||
'''
|
||||
|
@ -72,12 +76,13 @@ class TextSystem(object):
|
|||
bbox_num = len(img_crop_list)
|
||||
for bno in range(bbox_num):
|
||||
cv2.imwrite("./output/img_crop_%d.jpg" % bno, img_crop_list[bno])
|
||||
print(bno, rec_res[bno])
|
||||
logger.info(bno, rec_res[bno])
|
||||
|
||||
def __call__(self, img):
|
||||
ori_im = img.copy()
|
||||
dt_boxes, elapse = self.text_detector(img)
|
||||
print("dt_boxes num : {}, elapse : {}".format(len(dt_boxes), elapse))
|
||||
logger.info("dt_boxes num : {}, elapse : {}".format(
|
||||
len(dt_boxes), elapse))
|
||||
if dt_boxes is None:
|
||||
return None, None
|
||||
img_crop_list = []
|
||||
|
@ -88,8 +93,15 @@ class TextSystem(object):
|
|||
tmp_box = copy.deepcopy(dt_boxes[bno])
|
||||
img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
|
||||
img_crop_list.append(img_crop)
|
||||
if self.use_angle_cls:
|
||||
img_crop_list, angle_list, elapse = self.text_classifier(
|
||||
img_crop_list)
|
||||
logger.info("cls num : {}, elapse : {}".format(
|
||||
len(img_crop_list), elapse))
|
||||
|
||||
rec_res, elapse = self.text_recognizer(img_crop_list)
|
||||
print("rec_res num : {}, elapse : {}".format(len(rec_res), elapse))
|
||||
logger.info("rec_res num : {}, elapse : {}".format(
|
||||
len(rec_res), elapse))
|
||||
# self.print_draw_crop_rec_res(img_crop_list, rec_res)
|
||||
return dt_boxes, rec_res
|
||||
|
||||
|
@ -119,7 +131,8 @@ def main(args):
|
|||
image_file_list = get_image_file_list(args.image_dir)
|
||||
text_sys = TextSystem(args)
|
||||
is_visualize = True
|
||||
tackle_img_num = 0
|
||||
font_path = args.vis_font_path
|
||||
drop_score = args.drop_score
|
||||
for image_file in image_file_list:
|
||||
img, flag = check_and_read_gif(image_file)
|
||||
if not flag:
|
||||
|
@ -128,20 +141,16 @@ def main(args):
|
|||
logger.info("error in loading image:{}".format(image_file))
|
||||
continue
|
||||
starttime = time.time()
|
||||
tackle_img_num += 1
|
||||
if not args.use_gpu and args.enable_mkldnn and tackle_img_num % 30 == 0:
|
||||
text_sys = TextSystem(args)
|
||||
dt_boxes, rec_res = text_sys(img)
|
||||
elapse = time.time() - starttime
|
||||
print("Predict time of %s: %.3fs" % (image_file, elapse))
|
||||
logger.info("Predict time of %s: %.3fs" % (image_file, elapse))
|
||||
|
||||
drop_score = 0.5
|
||||
dt_num = len(dt_boxes)
|
||||
for dno in range(dt_num):
|
||||
text, score = rec_res[dno]
|
||||
if score >= drop_score:
|
||||
text_str = "%s, %.3f" % (text, score)
|
||||
print(text_str)
|
||||
logger.info(text_str)
|
||||
|
||||
if is_visualize:
|
||||
image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
||||
|
@ -149,15 +158,20 @@ def main(args):
|
|||
txts = [rec_res[i][0] for i in range(len(rec_res))]
|
||||
scores = [rec_res[i][1] for i in range(len(rec_res))]
|
||||
|
||||
draw_img = draw_ocr(
|
||||
image, boxes, txts, scores, drop_score=drop_score)
|
||||
draw_img = draw_ocr_box_txt(
|
||||
image,
|
||||
boxes,
|
||||
txts,
|
||||
scores,
|
||||
drop_score=drop_score,
|
||||
font_path=font_path)
|
||||
draw_img_save = "./inference_results/"
|
||||
if not os.path.exists(draw_img_save):
|
||||
os.makedirs(draw_img_save)
|
||||
cv2.imwrite(
|
||||
os.path.join(draw_img_save, os.path.basename(image_file)),
|
||||
draw_img[:, :, ::-1])
|
||||
print("The visualized image saved in {}".format(
|
||||
logger.info("The visualized image saved in {}".format(
|
||||
os.path.join(draw_img_save, os.path.basename(image_file))))
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue