diff --git a/doc/doc_ch/detection.md b/doc/doc_ch/detection.md index ec3cb276..08b94a9c 100644 --- a/doc/doc_ch/detection.md +++ b/doc/doc_ch/detection.md @@ -107,17 +107,13 @@ PaddleOCR计算三个OCR检测相关的指标,分别是:Precision、Recall 运行如下代码,根据配置文件`det_db_mv3.yml`中`save_res_path`指定的测试集检测结果文件,计算评估指标。 -评估时设置后处理参数`box_thresh=0.6`,`unclip_ratio=1.5`,使用不同数据集、不同模型训练,可调整这两个参数进行优化 -```shell -python3 tools/eval.py -c configs/det/det_mv3_db.yml -o Global.checkpoints="{path/to/weights}/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5 -``` +评估时设置后处理参数`box_thresh=0.5`,`unclip_ratio=1.5`,使用不同数据集、不同模型训练,可调整这两个参数进行优化 训练中模型参数默认保存在`Global.save_model_dir`目录下。在评估指标时,需要设置`Global.checkpoints`指向保存的参数文件。 - -比如: ```shell -python3 tools/eval.py -c configs/det/det_mv3_db.yml -o Global.checkpoints="./output/det_db/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5 +python3 tools/eval.py -c configs/det/det_mv3_db.yml -o Global.checkpoints="{path/to/weights}/best_accuracy" PostProcess.box_thresh=0.5 PostProcess.unclip_ratio=1.5 ``` + * 注:`box_thresh`、`unclip_ratio`是DB后处理所需要的参数,在评估EAST模型时不需要设置 ## 测试检测效果 diff --git a/doc/doc_en/detection_en.md b/doc/doc_en/detection_en.md index 6a2bda6b..7638315a 100644 --- a/doc/doc_en/detection_en.md +++ b/doc/doc_en/detection_en.md @@ -101,15 +101,11 @@ Run the following code to calculate the evaluation indicators. The result will b When evaluating, set post-processing parameters `box_thresh=0.6`, `unclip_ratio=1.5`. If you use different datasets, different models for training, these two parameters should be adjusted for better result. +The model parameters during training are saved in the `Global.save_model_dir` directory by default. When evaluating indicators, you need to set `Global.checkpoints` to point to the saved parameter file. ```shell python3 tools/eval.py -c configs/det/det_mv3_db.yml -o Global.checkpoints="{path/to/weights}/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5 ``` -The model parameters during training are saved in the `Global.save_model_dir` directory by default. When evaluating indicators, you need to set `Global.checkpoints` to point to the saved parameter file. -Such as: -```shell -python3 tools/eval.py -c configs/det/det_mv3_db.yml -o Global.checkpoints="./output/det_db/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5 -``` * Note: `box_thresh` and `unclip_ratio` are parameters required for DB post-processing, and not need to be set when evaluating the EAST model.