add pretrain to Global
This commit is contained in:
parent
4b56069d84
commit
3cdc9e5383
12
test/test.sh
12
test/test.sh
|
@ -8,6 +8,8 @@ FILENAME=$1
|
||||||
MODE=$2
|
MODE=$2
|
||||||
# prepare pretrained weights and dataset
|
# prepare pretrained weights and dataset
|
||||||
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
|
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
|
||||||
|
wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar
|
||||||
|
cd pretrain_models && tar xf det_mv3_db_v2.0_train.tar && cd ../
|
||||||
|
|
||||||
if [ ${MODE} = "lite_train_infer" ];then
|
if [ ${MODE} = "lite_train_infer" ];then
|
||||||
# pretrain lite train data
|
# pretrain lite train data
|
||||||
|
@ -107,28 +109,32 @@ for train_model in ${train_model_list[*]}; do
|
||||||
env="CUDA_VISIBLE_DEVICES=${array[0]}"
|
env="CUDA_VISIBLE_DEVICES=${array[0]}"
|
||||||
IFS="|"
|
IFS="|"
|
||||||
fi
|
fi
|
||||||
IFS="|"
|
|
||||||
for auto_cast in ${auto_cast_list[*]}; do
|
for auto_cast in ${auto_cast_list[*]}; do
|
||||||
for slim_trainer in ${slim_trainer_list[*]}; do
|
for slim_trainer in ${slim_trainer_list[*]}; do
|
||||||
if [ ${slim_trainer} = "norm" ]; then
|
if [ ${slim_trainer} = "norm" ]; then
|
||||||
trainer="tools/train.py"
|
trainer="tools/train.py"
|
||||||
export_model="tools/export_model.py"
|
export_model="tools/export_model.py"
|
||||||
|
pretrain="./pretrain_models/MobileNetV3_large_x0_5_pretrained"
|
||||||
elif [ ${slim_trainer} = "quant" ]; then
|
elif [ ${slim_trainer} = "quant" ]; then
|
||||||
trainer="deploy/slim/quantization/quant.py"
|
trainer="deploy/slim/quantization/quant.py"
|
||||||
export_model="deploy/slim/quantization/export_model.py"
|
export_model="deploy/slim/quantization/export_model.py"
|
||||||
|
pretrain="./pretrain_models/det_mv3_db_v2.0_train/best_accuracy"
|
||||||
elif [ ${slim_trainer} = "prune" ]; then
|
elif [ ${slim_trainer} = "prune" ]; then
|
||||||
trainer="deploy/slim/prune/sensitivity_anal.py"
|
trainer="deploy/slim/prune/sensitivity_anal.py"
|
||||||
export_model="deploy/slim/prune/export_prune_model.py"
|
export_model="deploy/slim/prune/export_prune_model.py"
|
||||||
|
pretrain="./pretrain_models/det_mv3_db_v2.0_train/best_accuracy"
|
||||||
elif [ ${slim_trainer} = "distill" ]; then
|
elif [ ${slim_trainer} = "distill" ]; then
|
||||||
trainer="deploy/slim/distill/train_dml.py"
|
trainer="deploy/slim/distill/train_dml.py"
|
||||||
export_model="deploy/slim/distill/export_distill_model.py"
|
export_model="deploy/slim/distill/export_distill_model.py"
|
||||||
|
pretrain=""
|
||||||
else
|
else
|
||||||
trainer="tools/train.py"
|
trainer="tools/train.py"
|
||||||
export_model="tools/export_model.py"
|
export_model="tools/export_model.py"
|
||||||
|
pretrain="./pretrain_models/MobileNetV3_large_x0_5_pretrained"
|
||||||
fi
|
fi
|
||||||
save_log="${log_path}/${model_name}_${slim_trainer}_autocast_${auto_cast}_gpuid_${gpu}"
|
save_log="${log_path}/${model_name}_${slim_trainer}_autocast_${auto_cast}_gpuid_${gpu}"
|
||||||
command="${env} ${python} ${launch} ${trainer} -c ${yml_file} -o Global.epoch_num=${epoch} Global.eval_batch_step=${eval_batch_step} Global.auto_cast=${auto_cast} Global.save_model_dir=${save_log} Global.use_gpu=${use_gpu} Train.loader.batch_size_per_card=2"
|
command="${env} ${python} ${launch} ${trainer} -c ${yml_file} -o Global.epoch_num=${epoch} Global.eval_batch_step=${eval_batch_step} Global.auto_cast=${auto_cast} Global.pretrained_model=${pretrain} Global.save_model_dir=${save_log} Global.use_gpu=${use_gpu} Train.loader.batch_size_per_card=2"
|
||||||
${env} ${python} ${launch} ${trainer} -c ${yml_file} -o Global.epoch_num=${epoch} Global.eval_batch_step=${eval_batch_step} Global.auto_cast=${auto_cast} Global.save_model_dir=${save_log} Global.use_gpu=${use_gpu} Train.loader.batch_size_per_card=2
|
${env} ${python} ${launch} ${trainer} -c ${yml_file} -o Global.epoch_num=${epoch} Global.eval_batch_step=${eval_batch_step} Global.auto_cast=${auto_cast} Global.pretrained_model=${pretrain} Global.save_model_dir=${save_log} Global.use_gpu=${use_gpu} Train.loader.batch_size_per_card=2
|
||||||
status_check $? "${trainer}" "${command}" "${save_log}/train.log"
|
status_check $? "${trainer}" "${command}" "${save_log}/train.log"
|
||||||
|
|
||||||
command="${env} ${python} ${export_model} -c ${yml_file} -o Global.pretrained_model=${save_log}/latest Global.save_inference_dir=${save_log}/export_inference/ Global.save_model_dir=${save_log}"
|
command="${env} ${python} ${export_model} -c ${yml_file} -o Global.pretrained_model=${save_log}/latest Global.save_inference_dir=${save_log}/export_inference/ Global.save_model_dir=${save_log}"
|
||||||
|
|
Loading…
Reference in New Issue