Merge branch 'dygraph' into add_test_serving
This commit is contained in:
commit
3d695fcc2d
|
@ -141,6 +141,7 @@ Train:
|
|||
img_mode: BGR
|
||||
channel_first: False
|
||||
- DetLabelEncode: # Class handling label
|
||||
- CopyPaste:
|
||||
- IaaAugment:
|
||||
augmenter_args:
|
||||
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
|
||||
|
|
|
@ -68,8 +68,7 @@ Loss:
|
|||
ohem_ratio: 3
|
||||
- DistillationDBLoss:
|
||||
weight: 1.0
|
||||
model_name_list: ["Student", "Teacher"]
|
||||
# key: maps
|
||||
model_name_list: ["Student"]
|
||||
name: DBLoss
|
||||
balance_loss: true
|
||||
main_loss_type: DiceLoss
|
||||
|
@ -116,6 +115,7 @@ Train:
|
|||
img_mode: BGR
|
||||
channel_first: False
|
||||
- DetLabelEncode: # Class handling label
|
||||
- CopyPaste:
|
||||
- IaaAugment:
|
||||
augmenter_args:
|
||||
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
|
||||
|
|
|
@ -118,6 +118,7 @@ Train:
|
|||
img_mode: BGR
|
||||
channel_first: False
|
||||
- DetLabelEncode: # Class handling label
|
||||
- CopyPaste:
|
||||
- IaaAugment:
|
||||
augmenter_args:
|
||||
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
|
||||
|
|
|
@ -94,7 +94,7 @@ Eval:
|
|||
label_file_list: [./train_data/total_text/test/test.txt]
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: RGB
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- E2ELabelEncodeTest:
|
||||
- E2EResizeForTest:
|
||||
|
@ -111,4 +111,4 @@ Eval:
|
|||
shuffle: False
|
||||
drop_last: False
|
||||
batch_size_per_card: 1 # must be 1
|
||||
num_workers: 2
|
||||
num_workers: 2
|
||||
|
|
|
@ -16,7 +16,7 @@ Focal Loss 出自论文《Focal Loss for Dense Object Detection》, 该loss最
|
|||
|
||||
从上图可以看到, 当γ> 0时,调整系数(1-y’)^γ 赋予易分类样本损失一个更小的权重,使得网络更关注于困难的、错分的样本。 调整因子γ用于调节简单样本权重降低的速率,当γ为0时即为交叉熵损失函数,当γ增加时,调整因子的影响也会随之增大。实验发现γ为2是最优。平衡因子α用来平衡正负样本本身的比例不均,文中α取0.25。
|
||||
|
||||
对于经典的CTC算法,假设某个特征序列(f<sub>1</sub>, f<sub>2</sub>, ......f<sub>t</sub>), 经过CTC解码之后结果等于label的概率为y’, 则CTC解码结果不为label的概率即为(1-y’);不难发现 CTCLoss值和y’有如下关系:
|
||||
对于经典的CTC算法,假设某个特征序列(f<sub>1</sub>, f<sub>2</sub>, ......f<sub>t</sub>), 经过CTC解码之后结果等于label的概率为y’, 则CTC解码结果不为label的概率即为(1-y’);不难发现, CTCLoss值和y’有如下关系:
|
||||
<div align="center">
|
||||
<img src="./equation_ctcloss.png" width = "250" />
|
||||
</div>
|
||||
|
@ -38,7 +38,7 @@ A-CTC Loss是CTC Loss + ACE Loss的简称。 其中ACE Loss出自论文< Aggrega
|
|||
<img src="./rec_algo_compare.png" width = "1000" />
|
||||
</div>
|
||||
|
||||
虽然ACELoss确实如上图所说,可以处理2D预测,在内存占用及推理速度方面具备优势,但在实践过程中,我们发现单独使用ACE Loss, 识别效果并不如CTCLoss. 因此,我们尝试将CTCLoss和ACELoss进行组合,同时以CTCLoss为主,将ACELoss 定位为一个辅助监督loss。 这一尝试收到了效果,在我们内部的实验数据集上,相比单独使用CTCLoss,识别准确率可以提升1%左右。
|
||||
虽然ACELoss确实如上图所说,可以处理2D预测,在内存占用及推理速度方面具备优势,但在实践过程中,我们发现单独使用ACE Loss, 识别效果并不如CTCLoss. 因此,我们尝试将CTCLoss和ACELoss进行结合,同时以CTCLoss为主,将ACELoss 定位为一个辅助监督loss。 这一尝试收到了效果,在我们内部的实验数据集上,相比单独使用CTCLoss,识别准确率可以提升1%左右。
|
||||
A_CTC Loss定义如下:
|
||||
<div align="center">
|
||||
<img src="./equation_a_ctc.png" width = "300" />
|
||||
|
@ -47,7 +47,7 @@ A_CTC Loss定义如下:
|
|||
实验中,λ = 0.1. ACE loss实现代码见: [ace_loss.py](../../ppocr/losses/ace_loss.py)
|
||||
|
||||
## 3. C-CTC Loss
|
||||
C-CTC Loss是CTC Loss + Center Loss的简称。 其中Center Loss出自论文 < A Discriminative Feature Learning Approach for Deep Face Recognition>. 最早用于人脸识别任务,用于增大累间距离,减小类内距离, 是Metric Learning领域一种较早的、也比较常用的一种算法。
|
||||
C-CTC Loss是CTC Loss + Center Loss的简称。 其中Center Loss出自论文 < A Discriminative Feature Learning Approach for Deep Face Recognition>. 最早用于人脸识别任务,用于增大类间距离,减小类内距离, 是Metric Learning领域一种较早的、也比较常用的一种算法。
|
||||
在中文OCR识别任务中,通过对badcase分析, 我们发现中文识别的一大难点是相似字符多,容易误识。 由此我们想到是否可以借鉴Metric Learing的想法, 增大相似字符的类间距,从而提高识别准确率。然而,MetricLearning主要用于图像识别领域,训练数据的标签为一个固定的值;而对于OCR识别来说,其本质上是一个序列识别任务,特征和label之间并不具有显式的对齐关系,因此两者如何结合依然是一个值得探索的方向。
|
||||
通过尝试Arcmargin, Cosmargin等方法, 我们最终发现Centerloss 有助于进一步提升识别的准确率。C_CTC Loss定义如下:
|
||||
<div align="center">
|
||||
|
|
|
@ -1,6 +1,13 @@
|
|||
# 运行环境准备
|
||||
|
||||
Windows和Mac用户推荐使用Anaconda搭建Python环境,Linux用户建议使用docker搭建PyThon环境。
|
||||
|
||||
推荐环境:
|
||||
- PaddlePaddle >= 2.0.0 (2.1.2)
|
||||
- python3.7
|
||||
- CUDA10.1 / CUDA10.2
|
||||
- CUDNN 7.6
|
||||
|
||||
如果对于Python环境熟悉的用户可以直接跳到第2步安装PaddlePaddle。
|
||||
|
||||
* [1. Python环境搭建](#1)
|
||||
|
@ -123,13 +130,13 @@ Windows和Mac用户推荐使用Anaconda搭建Python环境,Linux用户建议使
|
|||
# !! Contents within this block are managed by 'conda init' !!
|
||||
__conda_setup="$('/Users/xxx/opt/anaconda3/bin/conda' 'shell.bash' 'hook' 2> /dev/null)"
|
||||
if [ $? -eq 0 ]; then
|
||||
eval "$__conda_setup"
|
||||
eval "$__conda_setup"
|
||||
else
|
||||
if [ -f "/Users/xxx/opt/anaconda3/etc/profile.d/conda.sh" ]; then
|
||||
. "/Users/xxx/opt/anaconda3/etc/profile.d/conda.sh"
|
||||
else
|
||||
export PATH="/Users/xxx/opt/anaconda3/bin:$PATH"
|
||||
fi
|
||||
if [ -f "/Users/xxx/opt/anaconda3/etc/profile.d/conda.sh" ]; then
|
||||
. "/Users/xxx/opt/anaconda3/etc/profile.d/conda.sh"
|
||||
else
|
||||
export PATH="/Users/xxx/opt/anaconda3/bin:$PATH"
|
||||
fi
|
||||
fi
|
||||
unset __conda_setup
|
||||
# <<< conda initialize <<<
|
||||
|
@ -294,11 +301,12 @@ cd /home/Projects
|
|||
# 首次运行需创建一个docker容器,再次运行时不需要运行当前命令
|
||||
# 创建一个名字为ppocr的docker容器,并将当前目录映射到容器的/paddle目录下
|
||||
|
||||
如果您希望在CPU环境下使用docker,使用docker而不是nvidia-docker创建docker
|
||||
sudo docker run --name ppocr -v $PWD:/paddle --network=host -it paddlepaddle/paddle:latest-dev-cuda10.1-cudnn7-gcc82 /bin/bash
|
||||
#如果您希望在CPU环境下使用docker,使用docker而不是nvidia-docker创建docker
|
||||
sudo docker run --name ppocr -v $PWD:/paddle --network=host -it registry.baidubce.com/paddlepaddle/paddle:2.1.3-gpu-cuda10.2-cudnn7 /bin/bash
|
||||
|
||||
如果使用CUDA10,请运行以下命令创建容器,设置docker容器共享内存shm-size为64G,建议设置32G以上
|
||||
sudo nvidia-docker run --name ppocr -v $PWD:/paddle --shm-size=64G --network=host -it paddlepaddle/paddle:latest-dev-cuda10.1-cudnn7-gcc82 /bin/bash
|
||||
#如果使用CUDA10,请运行以下命令创建容器,设置docker容器共享内存shm-size为64G,建议设置32G以上
|
||||
# 如果是CUDA11+CUDNN8,推荐使用镜像registry.baidubce.com/paddlepaddle/paddle:2.1.3-gpu-cuda11.2-cudnn8
|
||||
sudo nvidia-docker run --name ppocr -v $PWD:/paddle --shm-size=64G --network=host -it registry.baidubce.com/paddlepaddle/paddle:2.1.3-gpu-cuda10.2-cudnn7 /bin/bash
|
||||
|
||||
# ctrl+P+Q可退出docker 容器,重新进入docker 容器使用如下命令
|
||||
sudo docker container exec -it ppocr /bin/bash
|
||||
|
@ -321,8 +329,3 @@ python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
|
|||
```
|
||||
|
||||
更多的版本需求,请参照[飞桨官网安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -1,11 +1,18 @@
|
|||
# Environment Preparation
|
||||
|
||||
Recommended working environment:
|
||||
- PaddlePaddle >= 2.0.0 (2.1.2)
|
||||
- python3.7
|
||||
- CUDA10.1 / CUDA10.2
|
||||
- CUDNN 7.6
|
||||
|
||||
* [1. Python Environment Setup](#1)
|
||||
+ [1.1 Windows](#1.1)
|
||||
+ [1.2 Mac](#1.2)
|
||||
+ [1.3 Linux](#1.3)
|
||||
* [2. Install PaddlePaddle 2.0](#2)
|
||||
|
||||
|
||||
<a name="1"></a>
|
||||
|
||||
## 1. Python Environment Setup
|
||||
|
@ -38,7 +45,7 @@
|
|||
- Check conda to add environment variables and ignore the warning that
|
||||
|
||||
<img src="../install/windows/anaconda_install_env.png" alt="add conda to path" width="500" align="center"/>
|
||||
|
||||
|
||||
|
||||
#### 1.1.2 Opening the terminal and creating the conda environment
|
||||
|
||||
|
@ -69,7 +76,7 @@
|
|||
# View the current location of python
|
||||
where python
|
||||
```
|
||||
|
||||
|
||||
<img src="../install/windows/conda_list_env.png" alt="create environment" width="600" align="center"/>
|
||||
|
||||
The above anaconda environment and python environment are installed
|
||||
|
@ -133,13 +140,13 @@ The above anaconda environment and python environment are installed
|
|||
# !!! Contents within this block are managed by 'conda init' !!!
|
||||
__conda_setup="$('/Users/xxx/opt/anaconda3/bin/conda' 'shell.bash' 'hook' 2> /dev/null)"
|
||||
if [ $? -eq 0 ]; then
|
||||
eval "$__conda_setup"
|
||||
eval "$__conda_setup"
|
||||
else
|
||||
if [ -f "/Users/xxx/opt/anaconda3/etc/profile.d/conda.sh" ]; then
|
||||
. "/Users/xxx/opt/anaconda3/etc/profile.d/conda.sh"
|
||||
else
|
||||
export PATH="/Users/xxx/opt/anaconda3/bin:$PATH"
|
||||
fi
|
||||
if [ -f "/Users/xxx/opt/anaconda3/etc/profile.d/conda.sh" ]; then
|
||||
. "/Users/xxx/opt/anaconda3/etc/profile.d/conda.sh"
|
||||
else
|
||||
export PATH="/Users/xxx/opt/anaconda3/bin:$PATH"
|
||||
fi
|
||||
fi
|
||||
unset __conda_setup
|
||||
# <<< conda initialize <<<
|
||||
|
@ -197,11 +204,10 @@ Linux users can choose to run either Anaconda or Docker. If you are familiar wit
|
|||
- **Download Anaconda**.
|
||||
|
||||
- Download at: https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=D
|
||||
|
||||
|
||||
|
||||
<img src="../install/linux/anaconda_download.png" akt="anaconda download" width="800" align="center"/>
|
||||
|
||||
|
||||
|
||||
- Select the appropriate version for your operating system
|
||||
- Type `uname -m` in the terminal to check the command set used by your system
|
||||
|
@ -216,12 +222,12 @@ Linux users can choose to run either Anaconda or Docker. If you are familiar wit
|
|||
sudo yum install wget # CentOS
|
||||
```
|
||||
```bash
|
||||
# Then use wget to download from Tsinghua source
|
||||
# Then use wget to download from Tsinghua source
|
||||
# If you want to download Anaconda3-2021.05-Linux-x86_64.sh, the download command is as follows
|
||||
wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-2021.05-Linux-x86_64.sh
|
||||
# If you want to download another version, you need to change the file name after the last 1 / to the version you want to download
|
||||
```
|
||||
|
||||
|
||||
- To install Anaconda.
|
||||
|
||||
- Type `sh Anaconda3-2021.05-Linux-x86_64.sh` at the command line
|
||||
|
@ -309,7 +315,18 @@ cd /home/Projects
|
|||
# Create a docker container named ppocr and map the current directory to the /paddle directory of the container
|
||||
|
||||
# If using CPU, use docker instead of nvidia-docker to create docker
|
||||
sudo docker run --name ppocr -v $PWD:/paddle --network=host -it paddlepaddle/paddle:latest-dev-cuda10.1-cudnn7-gcc82 /bin/bash
|
||||
sudo docker run --name ppocr -v $PWD:/paddle --network=host -it registry.baidubce.com/paddlepaddle/paddle:2.1.3-gpu-cuda10.2-cudnn7 /bin/bash
|
||||
|
||||
# If using GPU, use nvidia-docker to create docker
|
||||
# docker image registry.baidubce.com/paddlepaddle/paddle:2.1.3-gpu-cuda11.2-cudnn8 is recommended for CUDA11.2 + CUDNN8.
|
||||
sudo nvidia-docker run --name ppocr -v $PWD:/paddle --shm-size=64G --network=host -it registry.baidubce.com/paddlepaddle/paddle:2.1.3-gpu-cuda10.2-cudnn7 /bin/bash
|
||||
|
||||
```
|
||||
You can also visit [DockerHub](https://hub.docker.com/r/paddlepaddle/paddle/tags/) to get the image that fits your machine.
|
||||
|
||||
```
|
||||
# ctrl+P+Q to exit docker, to re-enter docker using the following command:
|
||||
sudo docker container exec -it ppocr /bin/bash
|
||||
```
|
||||
|
||||
<a name="2"></a>
|
||||
|
@ -329,4 +346,3 @@ python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
|
|||
```
|
||||
|
||||
For more software version requirements, please refer to the instructions in [Installation Document](https://www.paddlepaddle.org.cn/install/quick) for operation.
|
||||
|
||||
|
|
BIN
doc/joinus.PNG
BIN
doc/joinus.PNG
Binary file not shown.
Before Width: | Height: | Size: 194 KiB After Width: | Height: | Size: 188 KiB |
|
@ -32,6 +32,7 @@ class ACELoss(nn.Layer):
|
|||
def __call__(self, predicts, batch):
|
||||
if isinstance(predicts, (list, tuple)):
|
||||
predicts = predicts[-1]
|
||||
|
||||
B, N = predicts.shape[:2]
|
||||
div = paddle.to_tensor([N]).astype('float32')
|
||||
|
||||
|
@ -42,9 +43,7 @@ class ACELoss(nn.Layer):
|
|||
length = batch[2].astype("float32")
|
||||
batch = batch[3].astype("float32")
|
||||
batch[:, 0] = paddle.subtract(div, length)
|
||||
|
||||
batch = paddle.divide(batch, div)
|
||||
|
||||
loss = self.loss_func(aggregation_preds, batch)
|
||||
|
||||
return {"loss_ace": loss}
|
||||
|
|
|
@ -27,7 +27,6 @@ class CenterLoss(nn.Layer):
|
|||
"""
|
||||
Reference: Wen et al. A Discriminative Feature Learning Approach for Deep Face Recognition. ECCV 2016.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
num_classes=6625,
|
||||
feat_dim=96,
|
||||
|
@ -37,8 +36,7 @@ class CenterLoss(nn.Layer):
|
|||
self.num_classes = num_classes
|
||||
self.feat_dim = feat_dim
|
||||
self.centers = paddle.randn(
|
||||
shape=[self.num_classes, self.feat_dim]).astype(
|
||||
"float64") #random center
|
||||
shape=[self.num_classes, self.feat_dim]).astype("float64")
|
||||
|
||||
if init_center:
|
||||
assert os.path.exists(
|
||||
|
@ -60,22 +58,23 @@ class CenterLoss(nn.Layer):
|
|||
|
||||
batch_size = feats_reshape.shape[0]
|
||||
|
||||
#calc feat * feat
|
||||
dist1 = paddle.sum(paddle.square(feats_reshape), axis=1, keepdim=True)
|
||||
dist1 = paddle.expand(dist1, [batch_size, self.num_classes])
|
||||
#calc l2 distance between feats and centers
|
||||
square_feat = paddle.sum(paddle.square(feats_reshape),
|
||||
axis=1,
|
||||
keepdim=True)
|
||||
square_feat = paddle.expand(square_feat, [batch_size, self.num_classes])
|
||||
|
||||
#dist2 of centers
|
||||
dist2 = paddle.sum(paddle.square(self.centers), axis=1,
|
||||
keepdim=True) #num_classes
|
||||
dist2 = paddle.expand(dist2,
|
||||
[self.num_classes, batch_size]).astype("float64")
|
||||
dist2 = paddle.transpose(dist2, [1, 0])
|
||||
square_center = paddle.sum(paddle.square(self.centers),
|
||||
axis=1,
|
||||
keepdim=True)
|
||||
square_center = paddle.expand(
|
||||
square_center, [self.num_classes, batch_size]).astype("float64")
|
||||
square_center = paddle.transpose(square_center, [1, 0])
|
||||
|
||||
#first x * x + y * y
|
||||
distmat = paddle.add(dist1, dist2)
|
||||
tmp = paddle.matmul(feats_reshape,
|
||||
paddle.transpose(self.centers, [1, 0]))
|
||||
distmat = distmat - 2.0 * tmp
|
||||
distmat = paddle.add(square_feat, square_center)
|
||||
feat_dot_center = paddle.matmul(feats_reshape,
|
||||
paddle.transpose(self.centers, [1, 0]))
|
||||
distmat = distmat - 2.0 * feat_dot_center
|
||||
|
||||
#generate the mask
|
||||
classes = paddle.arange(self.num_classes).astype("int64")
|
||||
|
@ -83,7 +82,8 @@ class CenterLoss(nn.Layer):
|
|||
paddle.unsqueeze(label, 1), (batch_size, self.num_classes))
|
||||
mask = paddle.equal(
|
||||
paddle.expand(classes, [batch_size, self.num_classes]),
|
||||
label).astype("float64") #get mask
|
||||
label).astype("float64")
|
||||
dist = paddle.multiply(distmat, mask)
|
||||
|
||||
loss = paddle.sum(paddle.clip(dist, min=1e-12, max=1e+12)) / batch_size
|
||||
return {'loss_center': loss}
|
||||
|
|
|
@ -9,11 +9,14 @@ from paddle import nn
|
|||
class SARLoss(nn.Layer):
|
||||
def __init__(self, **kwargs):
|
||||
super(SARLoss, self).__init__()
|
||||
self.loss_func = paddle.nn.loss.CrossEntropyLoss(reduction="mean", ignore_index=96)
|
||||
self.loss_func = paddle.nn.loss.CrossEntropyLoss(
|
||||
reduction="mean", ignore_index=92)
|
||||
|
||||
def forward(self, predicts, batch):
|
||||
predict = predicts[:, :-1, :] # ignore last index of outputs to be in same seq_len with targets
|
||||
label = batch[1].astype("int64")[:, 1:] # ignore first index of target in loss calculation
|
||||
predict = predicts[:, :
|
||||
-1, :] # ignore last index of outputs to be in same seq_len with targets
|
||||
label = batch[1].astype(
|
||||
"int64")[:, 1:] # ignore first index of target in loss calculation
|
||||
batch_size, num_steps, num_classes = predict.shape[0], predict.shape[
|
||||
1], predict.shape[2]
|
||||
assert len(label.shape) == len(list(predict.shape)) - 1, \
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||||
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -16,26 +16,17 @@ from __future__ import absolute_import
|
|||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import math
|
||||
import numpy as np
|
||||
import paddle
|
||||
from paddle import ParamAttr
|
||||
from paddle import ParamAttr, reshape, transpose
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as F
|
||||
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
|
||||
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
||||
from paddle.nn.initializer import KaimingNormal
|
||||
import math
|
||||
import numpy as np
|
||||
import paddle
|
||||
from paddle import ParamAttr, reshape, transpose, concat, split
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as F
|
||||
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
|
||||
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
||||
from paddle.nn.initializer import KaimingNormal
|
||||
import math
|
||||
from paddle.nn.functional import hardswish, hardsigmoid
|
||||
from paddle.regularizer import L2Decay
|
||||
from paddle.nn.functional import hardswish, hardsigmoid
|
||||
|
||||
|
||||
class ConvBNLayer(nn.Layer):
|
||||
|
|
|
@ -51,7 +51,7 @@ class EncoderWithFC(nn.Layer):
|
|||
super(EncoderWithFC, self).__init__()
|
||||
self.out_channels = hidden_size
|
||||
weight_attr, bias_attr = get_para_bias_attr(
|
||||
l2_decay=0.00001, k=in_channels, name='reduce_encoder_fea')
|
||||
l2_decay=0.00001, k=in_channels)
|
||||
self.fc = nn.Linear(
|
||||
in_channels,
|
||||
hidden_size,
|
||||
|
|
|
@ -0,0 +1,90 @@
|
|||
0
|
||||
1
|
||||
2
|
||||
3
|
||||
4
|
||||
5
|
||||
6
|
||||
7
|
||||
8
|
||||
9
|
||||
a
|
||||
b
|
||||
c
|
||||
d
|
||||
e
|
||||
f
|
||||
g
|
||||
h
|
||||
i
|
||||
j
|
||||
k
|
||||
l
|
||||
m
|
||||
n
|
||||
o
|
||||
p
|
||||
q
|
||||
r
|
||||
s
|
||||
t
|
||||
u
|
||||
v
|
||||
w
|
||||
x
|
||||
y
|
||||
z
|
||||
A
|
||||
B
|
||||
C
|
||||
D
|
||||
E
|
||||
F
|
||||
G
|
||||
H
|
||||
I
|
||||
J
|
||||
K
|
||||
L
|
||||
M
|
||||
N
|
||||
O
|
||||
P
|
||||
Q
|
||||
R
|
||||
S
|
||||
T
|
||||
U
|
||||
V
|
||||
W
|
||||
X
|
||||
Y
|
||||
Z
|
||||
!
|
||||
"
|
||||
#
|
||||
$
|
||||
%
|
||||
&
|
||||
'
|
||||
(
|
||||
)
|
||||
*
|
||||
+
|
||||
,
|
||||
-
|
||||
.
|
||||
/
|
||||
:
|
||||
;
|
||||
<
|
||||
=
|
||||
>
|
||||
?
|
||||
@
|
||||
[
|
||||
\
|
||||
]
|
||||
_
|
||||
`
|
||||
~
|
Binary file not shown.
After Width: | Height: | Size: 33 KiB |
Binary file not shown.
After Width: | Height: | Size: 64 KiB |
Binary file not shown.
After Width: | Height: | Size: 138 KiB |
Binary file not shown.
After Width: | Height: | Size: 72 KiB |
|
@ -0,0 +1,56 @@
|
|||
# C++预测功能测试
|
||||
|
||||
C++预测功能测试的主程序为`test_cpp.sh`,可以测试基于C++预测库的模型推理功能。
|
||||
|
||||
## 测试结论汇总
|
||||
|
||||
| 算法名称 | 模型名称 |device | batchsize | mkldnn | cpu多线程 | tensorrt | 离线量化 |
|
||||
| ---- | ---- | ---- | ---- | ---- | ---- | ----| --- |
|
||||
| DB |ch_ppocr_mobile_v2.0_det| CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 |
|
||||
| DB |ch_ppocr_server_v2.0_det| CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 |
|
||||
| CRNN |ch_ppocr_mobile_v2.0_rec| CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 |
|
||||
| CRNN |ch_ppocr_server_v2.0_rec| CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 |
|
||||
|PP-OCR|ch_ppocr_server_v2.0 | CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 |
|
||||
|PP-OCR|ch_ppocr_server_v2.0 | CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 |
|
||||
|
||||
|
||||
|
||||
## 1. 功能测试
|
||||
先运行`prepare.sh`准备数据和模型,然后运行`test_cpp.sh`进行测试,最终在```tests/output```目录下生成`cpp_infer_*.log`后缀的日志文件。
|
||||
|
||||
```shell
|
||||
bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt
|
||||
|
||||
# 用法1:
|
||||
bash tests/test_cpp.sh ./tests/configs/ppocr_det_mobile_params.txt
|
||||
# 用法2: 指定GPU卡预测,第三个传入参数为GPU卡号
|
||||
bash tests/test_cpp.sh ./tests/configs/ppocr_det_mobile_params.txt '1'
|
||||
```
|
||||
|
||||
|
||||
## 2. 精度测试
|
||||
|
||||
使用compare_results.py脚本比较模型预测的结果是否符合预期,主要步骤包括:
|
||||
- 提取日志中的预测坐标;
|
||||
- 从本地文件中提取保存好的坐标结果;
|
||||
- 比较上述两个结果是否符合精度预期,误差大于设置阈值时会报错。
|
||||
|
||||
### 使用方式
|
||||
运行命令:
|
||||
```shell
|
||||
python3.7 tests/compare_results.py --gt_file=./tests/results/cpp_*.txt --log_file=./tests/output/cpp_*.log --atol=1e-3 --rtol=1e-3
|
||||
```
|
||||
|
||||
参数介绍:
|
||||
- gt_file: 指向事先保存好的预测结果路径,支持*.txt 结尾,会自动索引*.txt格式的文件,文件默认保存在tests/result/ 文件夹下
|
||||
- log_file: 指向运行tests/test.sh 脚本的infer模式保存的预测日志,预测日志中打印的有预测结果,比如:文本框,预测文本,类别等等,同样支持infer_*.log格式传入
|
||||
- atol: 设置的绝对误差
|
||||
- rtol: 设置的相对误差
|
||||
|
||||
### 运行结果
|
||||
|
||||
正常运行效果如下图:
|
||||
<img src="compare_right.png" width="1000">
|
||||
|
||||
出现不一致结果时的运行输出:
|
||||
<img src="compare_wrong.png" width="1000">
|
|
@ -0,0 +1,112 @@
|
|||
# Python功能测试
|
||||
|
||||
Python功能测试的主程序为`test_python.sh`,可以测试基于Python的模型训练、评估、推理等基本功能,包括裁剪、量化、蒸馏。
|
||||
|
||||
## 测试结论汇总
|
||||
|
||||
- 训练相关:
|
||||
|
||||
| 算法名称 | 模型名称 | 单机单卡 | 单机多卡 | 多机多卡 | 模型压缩(单机多卡) |
|
||||
| :---- | :---- | :---- | :---- | :---- | :---- |
|
||||
| DB | ch_ppocr_mobile_v2.0_det| 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练:FPGM裁剪、PACT量化 |
|
||||
| DB | ch_ppocr_server_v2.0_det| 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练:FPGM裁剪、PACT量化 |
|
||||
| CRNN | ch_ppocr_mobile_v2.0_rec| 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练:FPGM裁剪、PACT量化 |
|
||||
| CRNN | ch_ppocr_server_v2.0_rec| 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练:FPGM裁剪、PACT量化 |
|
||||
|PP-OCR| ch_ppocr_mobile_v2.0| 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练:FPGM裁剪、PACT量化 |
|
||||
|PP-OCR| ch_ppocr_server_v2.0| 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练 <br> 混合精度 | 正常训练:FPGM裁剪、PACT量化 |
|
||||
|
||||
|
||||
- 预测相关:
|
||||
|
||||
| 算法名称 | 模型名称 |device | batchsize | mkldnn | cpu多线程 | tensorrt | 离线量化 |
|
||||
| ---- | ---- | ---- | ---- | ---- | ---- | ----| --- |
|
||||
| DB |ch_ppocr_mobile_v2.0_det| CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 |
|
||||
| DB |ch_ppocr_server_v2.0_det| CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 |
|
||||
| CRNN |ch_ppocr_mobile_v2.0_rec| CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 |
|
||||
| CRNN |ch_ppocr_server_v2.0_rec| CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 |
|
||||
|PP-OCR|ch_ppocr_server_v2.0 | CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 |
|
||||
|PP-OCR|ch_ppocr_server_v2.0 | CPU/GPU | 1/6 | 支持 | 支持 | fp32/fp16/int8 | 支持 |
|
||||
|
||||
|
||||
|
||||
## 1. 安装依赖
|
||||
- 安装PaddlePaddle >= 2.0
|
||||
- 安装PaddleOCR依赖
|
||||
```
|
||||
pip3 install -r ../requirements.txt
|
||||
```
|
||||
- 安装autolog(规范化日志输出工具)
|
||||
```
|
||||
git clone https://github.com/LDOUBLEV/AutoLog
|
||||
cd AutoLog
|
||||
pip3 install -r requirements.txt
|
||||
python3 setup.py bdist_wheel
|
||||
pip3 install ./dist/auto_log-1.0.0-py3-none-any.whl
|
||||
cd ../
|
||||
```
|
||||
|
||||
|
||||
## 2. 功能测试
|
||||
先运行`prepare.sh`准备数据和模型,然后运行`test_python.sh`进行测试,最终在```tests/output```目录下生成`infer_*.log`格式的日志文件。
|
||||
|
||||
test_python.sh包含四种运行模式,每种模式的运行数据不同,分别用于测试速度和精度,分别是:
|
||||
|
||||
- 模式1:lite_train_infer,使用少量数据训练,用于快速验证训练到预测的走通流程,不验证精度和速度;
|
||||
```shell
|
||||
bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt 'lite_train_infer'
|
||||
bash tests/test_python.sh ./tests/configs/ppocr_det_mobile_params.txt 'lite_train_infer'
|
||||
```
|
||||
|
||||
- 模式2:whole_infer,使用少量数据训练,一定量数据预测,用于验证训练后的模型执行预测,预测速度是否合理;
|
||||
```shell
|
||||
bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt 'whole_infer'
|
||||
bash tests/test_python.sh ./tests/configs/ppocr_det_mobile_params.txt 'whole_infer'
|
||||
```
|
||||
|
||||
- 模式3:infer 不训练,全量数据预测,走通开源模型评估、动转静,检查inference model预测时间和精度;
|
||||
```shell
|
||||
bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt 'infer'
|
||||
# 用法1:
|
||||
bash tests/test_python.sh ./tests/configs/ppocr_det_mobile_params.txt 'infer'
|
||||
# 用法2: 指定GPU卡预测,第三个传入参数为GPU卡号
|
||||
bash tests/test_python.sh ./tests/configs/ppocr_det_mobile_params.txt 'infer' '1'
|
||||
```
|
||||
|
||||
- 模式4:whole_train_infer , CE: 全量数据训练,全量数据预测,验证模型训练精度,预测精度,预测速度;
|
||||
```shell
|
||||
bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt 'whole_train_infer'
|
||||
bash tests/test.sh ./tests/configs/ppocr_det_mobile_params.txt 'whole_train_infer'
|
||||
```
|
||||
|
||||
- 模式5:klquant_infer , 测试离线量化;
|
||||
```shell
|
||||
bash tests/test_python.sh tests/configs/ppocr_det_mobile_params.txt 'klquant_infer'
|
||||
```
|
||||
|
||||
|
||||
## 3. 精度测试
|
||||
|
||||
使用compare_results.py脚本比较模型预测的结果是否符合预期,主要步骤包括:
|
||||
- 提取日志中的预测坐标;
|
||||
- 从本地文件中提取保存好的坐标结果;
|
||||
- 比较上述两个结果是否符合精度预期,误差大于设置阈值时会报错。
|
||||
|
||||
### 使用方式
|
||||
运行命令:
|
||||
```shell
|
||||
python3.7 tests/compare_results.py --gt_file=./tests/results/python_*.txt --log_file=./tests/output/python_*.log --atol=1e-3 --rtol=1e-3
|
||||
```
|
||||
|
||||
参数介绍:
|
||||
- gt_file: 指向事先保存好的预测结果路径,支持*.txt 结尾,会自动索引*.txt格式的文件,文件默认保存在tests/result/ 文件夹下
|
||||
- log_file: 指向运行tests/test.sh 脚本的infer模式保存的预测日志,预测日志中打印的有预测结果,比如:文本框,预测文本,类别等等,同样支持infer_*.log格式传入
|
||||
- atol: 设置的绝对误差
|
||||
- rtol: 设置的相对误差
|
||||
|
||||
### 运行结果
|
||||
|
||||
正常运行效果如下图:
|
||||
<img src="compare_right.png" width="1000">
|
||||
|
||||
出现不一致结果时的运行输出:
|
||||
<img src="compare_wrong.png" width="1000">
|
143
tests/readme.md
143
tests/readme.md
|
@ -1,72 +1,93 @@
|
|||
|
||||
# 从训练到推理部署工具链测试方法介绍
|
||||
# 推理部署导航
|
||||
|
||||
test.sh和params.txt文件配合使用,完成OCR轻量检测和识别模型从训练到预测的流程测试。
|
||||
飞桨除了基本的模型训练和预测,还提供了支持多端多平台的高性能推理部署工具。本文档提供了PaddleOCR中所有模型的推理部署导航,方便用户查阅每种模型的推理部署打通情况,并可以进行一键测试。
|
||||
|
||||
# 安装依赖
|
||||
- 安装PaddlePaddle >= 2.0
|
||||
- 安装PaddleOCR依赖
|
||||
```
|
||||
pip3 install -r ../requirements.txt
|
||||
```
|
||||
- 安装autolog
|
||||
```
|
||||
git clone https://github.com/LDOUBLEV/AutoLog
|
||||
cd AutoLog
|
||||
pip3 install -r requirements.txt
|
||||
python3 setup.py bdist_wheel
|
||||
pip3 install ./dist/auto_log-1.0.0-py3-none-any.whl
|
||||
cd ../
|
||||
```
|
||||
<div align="center">
|
||||
<img src="docs/guide.png" width="1000">
|
||||
</div>
|
||||
|
||||
# 目录介绍
|
||||
打通情况汇总如下,已填写的部分表示可以使用本工具进行一键测试,未填写的表示正在支持中。
|
||||
|
||||
```bash
|
||||
| 算法论文 | 模型名称 | 模型类型 | python训练预测 | 其他 |
|
||||
| :--- | :--- | :---- | :-------- | :---- |
|
||||
| DB |ch_ppocr_mobile_v2.0_det | 检测 | 支持 | Paddle Inference: C++预测 <br> Paddle Serving: Python, C++ <br> Paddle-Lite: Python, C++ / ARM CPU |
|
||||
| DB |ch_ppocr_server_v2.0_det | 检测 | 支持 | Paddle Inference: C++预测 <br> Paddle Serving: Python, C++ <br> Paddle-Lite: Python, C++ / ARM CPU |
|
||||
| DB |ch_PP-OCRv2_det | 检测 |
|
||||
| CRNN |ch_ppocr_mobile_v2.0_rec | 识别 | 支持 | Paddle Inference: C++预测 <br> Paddle Serving: Python, C++ <br> Paddle-Lite: Python, C++ / ARM CPU |
|
||||
| CRNN |ch_ppocr_server_v2.0_rec | 识别 | 支持 | Paddle Inference: C++预测 <br> Paddle Serving: Python, C++ <br> Paddle-Lite: Python, C++ / ARM CPU |
|
||||
| CRNN |ch_PP-OCRv2_rec | 识别 |
|
||||
| DB |det_mv3_db_v2.0 | 检测 |
|
||||
| DB |det_r50_vd_db_v2.0 | 检测 |
|
||||
| EAST |det_mv3_east_v2.0 | 检测 |
|
||||
| EAST |det_r50_vd_east_v2.0 | 检测 |
|
||||
| PSENet |det_mv3_pse_v2.0 | 检测 |
|
||||
| PSENet |det_r50_vd_pse_v2.0 | 检测 |
|
||||
| SAST |det_r50_vd_sast_totaltext_v2.0 | 检测 |
|
||||
| Rosetta|rec_mv3_none_none_ctc_v2.0 | 识别 |
|
||||
| Rosetta|rec_r34_vd_none_none_ctc_v2.0 | 识别 |
|
||||
| CRNN |rec_mv3_none_bilstm_ctc_v2.0 | 识别 |
|
||||
| CRNN |rec_r34_vd_none_bilstm_ctc_v2.0| 识别 |
|
||||
| StarNet|rec_mv3_tps_bilstm_ctc_v2.0 | 识别 |
|
||||
| StarNet|rec_r34_vd_tps_bilstm_ctc_v2.0 | 识别 |
|
||||
| RARE |rec_mv3_tps_bilstm_att_v2.0 | 识别 |
|
||||
| RARE |rec_r34_vd_tps_bilstm_att_v2.0 | 识别 |
|
||||
| SRN |rec_r50fpn_vd_none_srn | 识别 |
|
||||
| NRTR |rec_mtb_nrtr | 识别 |
|
||||
| SAR |rec_r31_sar | 识别 |
|
||||
| PGNet |rec_r34_vd_none_none_ctc_v2.0 | 端到端|
|
||||
|
||||
|
||||
|
||||
## 一键测试工具使用
|
||||
### 目录介绍
|
||||
|
||||
```shell
|
||||
tests/
|
||||
├── ocr_det_params.txt # 测试OCR检测模型的参数配置文件
|
||||
├── ocr_rec_params.txt # 测试OCR识别模型的参数配置文件
|
||||
├── ocr_ppocr_mobile_params.txt # 测试OCR检测+识别模型串联的参数配置文件
|
||||
└── prepare.sh # 完成test.sh运行所需要的数据和模型下载
|
||||
└── test.sh # 测试主程序
|
||||
├── configs/ # 配置文件目录
|
||||
├── det_mv3_db.yml # 测试mobile版ppocr检测模型训练的yml文件
|
||||
├── det_r50_vd_db.yml # 测试server版ppocr检测模型训练的yml文件
|
||||
├── rec_icdar15_r34_train.yml # 测试server版ppocr识别模型训练的yml文件
|
||||
├── ppocr_sys_mobile_params.txt # 测试mobile版ppocr检测+识别模型串联的参数配置文件
|
||||
├── ppocr_det_mobile_params.txt # 测试mobile版ppocr检测模型的参数配置文件
|
||||
├── ppocr_rec_mobile_params.txt # 测试mobile版ppocr识别模型的参数配置文件
|
||||
├── ppocr_sys_server_params.txt # 测试server版ppocr检测+识别模型串联的参数配置文件
|
||||
├── ppocr_det_server_params.txt # 测试server版ppocr检测模型的参数配置文件
|
||||
├── ppocr_rec_server_params.txt # 测试server版ppocr识别模型的参数配置文件
|
||||
├── ...
|
||||
├── results/ # 预先保存的预测结果,用于和实际预测结果进行精读比对
|
||||
├── ppocr_det_mobile_results_fp32.txt # 预存的mobile版ppocr检测模型fp32精度的结果
|
||||
├── ppocr_det_mobile_results_fp16.txt # 预存的mobile版ppocr检测模型fp16精度的结果
|
||||
├── ppocr_det_mobile_results_fp32_cpp.txt # 预存的mobile版ppocr检测模型c++预测的fp32精度的结果
|
||||
├── ppocr_det_mobile_results_fp16_cpp.txt # 预存的mobile版ppocr检测模型c++预测的fp16精度的结果
|
||||
├── ...
|
||||
├── prepare.sh # 完成test_*.sh运行所需要的数据和模型下载
|
||||
├── test_python.sh # 测试python训练预测的主程序
|
||||
├── test_cpp.sh # 测试c++预测的主程序
|
||||
├── test_serving.sh # 测试serving部署预测的主程序
|
||||
├── test_lite.sh # 测试lite部署预测的主程序
|
||||
├── compare_results.py # 用于对比log中的预测结果与results中的预存结果精度误差是否在限定范围内
|
||||
└── readme.md # 使用文档
|
||||
```
|
||||
|
||||
# 使用方法
|
||||
### 测试流程
|
||||
使用本工具,可以测试不同功能的支持情况,以及预测结果是否对齐,测试流程如下:
|
||||
<div align="center">
|
||||
<img src="docs/test.png" width="800">
|
||||
</div>
|
||||
|
||||
test.sh包含四种运行模式,每种模式的运行数据不同,分别用于测试速度和精度,分别是:
|
||||
1. 运行prepare.sh准备测试所需数据和模型;
|
||||
2. 运行要测试的功能对应的测试脚本`test_*.sh`,产出log,由log可以看到不同配置是否运行成功;
|
||||
3. 用`compare_results.py`对比log中的预测结果和预存在results目录下的结果,判断预测精度是否符合预期(在误差范围内)。
|
||||
|
||||
- 模式1:lite_train_infer,使用少量数据训练,用于快速验证训练到预测的走通流程,不验证精度和速度;
|
||||
```shell
|
||||
bash tests/prepare.sh ./tests/ocr_det_params.txt 'lite_train_infer'
|
||||
bash tests/test.sh ./tests/ocr_det_params.txt 'lite_train_infer'
|
||||
```
|
||||
|
||||
- 模式2:whole_infer,使用少量数据训练,一定量数据预测,用于验证训练后的模型执行预测,预测速度是否合理;
|
||||
```shell
|
||||
bash tests/prepare.sh ./tests/ocr_det_params.txt 'whole_infer'
|
||||
bash tests/test.sh ./tests/ocr_det_params.txt 'whole_infer'
|
||||
```
|
||||
|
||||
- 模式3:infer 不训练,全量数据预测,走通开源模型评估、动转静,检查inference model预测时间和精度;
|
||||
```shell
|
||||
bash tests/prepare.sh ./tests/ocr_det_params.txt 'infer'
|
||||
# 用法1:
|
||||
bash tests/test.sh ./tests/ocr_det_params.txt 'infer'
|
||||
# 用法2: 指定GPU卡预测,第三个传入参数为GPU卡号
|
||||
bash tests/test.sh ./tests/ocr_det_params.txt 'infer' '1'
|
||||
```
|
||||
|
||||
- 模式4:whole_train_infer , CE: 全量数据训练,全量数据预测,验证模型训练精度,预测精度,预测速度;
|
||||
```shell
|
||||
bash tests/prepare.sh ./tests/ocr_det_params.txt 'whole_train_infer'
|
||||
bash tests/test.sh ./tests/ocr_det_params.txt 'whole_train_infer'
|
||||
```
|
||||
|
||||
- 模式5:cpp_infer , CE: 验证inference model的c++预测是否走通;
|
||||
```shell
|
||||
bash tests/prepare.sh ./tests/ocr_det_params.txt 'cpp_infer'
|
||||
bash tests/test.sh ./tests/ocr_det_params.txt 'cpp_infer'
|
||||
```
|
||||
|
||||
# 日志输出
|
||||
最终在```tests/output```目录下生成.log后缀的日志文件
|
||||
其中,有4个测试主程序,功能如下:
|
||||
- `test_python.sh`:测试基于Python的模型训练、评估、推理等基本功能,包括裁剪、量化、蒸馏。
|
||||
- `test_cpp.sh`:测试基于C++的模型推理。
|
||||
- `test_serving.sh`:测试基于Paddle Serving的服务化部署功能。
|
||||
- `test_lite.sh`:测试基于Paddle-Lite的端侧预测部署功能。
|
||||
|
||||
各功能测试中涉及GPU/CPU、mkldnn、Tensorrt等多种参数配置,点击相应链接了解更多细节和使用教程:
|
||||
[test_python使用](docs/test_python.md)
|
||||
[test_cpp使用](docs/test_cpp.md)
|
||||
[test_serving使用](docs/test_serving.md)
|
||||
[test_lite使用](docs/test_lite.md)
|
||||
|
|
634
tests/test.sh
634
tests/test.sh
|
@ -1,634 +0,0 @@
|
|||
#!/bin/bash
|
||||
FILENAME=$1
|
||||
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer', 'cpp_infer', 'serving_infer', 'klquant_infer']
|
||||
MODE=$2
|
||||
if [ ${MODE} = "cpp_infer" ]; then
|
||||
dataline=$(awk 'NR==67, NR==81{print}' $FILENAME)
|
||||
elif [ ${MODE} = "serving_infer" ]; then
|
||||
dataline=$(awk 'NR==52, NR==66{print}' $FILENAME)
|
||||
elif [ ${MODE} = "klquant_infer" ]; then
|
||||
dataline=$(awk 'NR==82, NR==98{print}' $FILENAME)
|
||||
else
|
||||
dataline=$(awk 'NR==1, NR==51{print}' $FILENAME)
|
||||
fi
|
||||
|
||||
# parser params
|
||||
IFS=$'\n'
|
||||
lines=(${dataline})
|
||||
|
||||
function func_parser_key(){
|
||||
strs=$1
|
||||
IFS=":"
|
||||
array=(${strs})
|
||||
tmp=${array[0]}
|
||||
echo ${tmp}
|
||||
}
|
||||
function func_parser_value(){
|
||||
strs=$1
|
||||
IFS=":"
|
||||
array=(${strs})
|
||||
tmp=${array[1]}
|
||||
echo ${tmp}
|
||||
}
|
||||
function func_set_params(){
|
||||
key=$1
|
||||
value=$2
|
||||
if [ ${key} = "null" ];then
|
||||
echo " "
|
||||
elif [[ ${value} = "null" ]] || [[ ${value} = " " ]] || [ ${#value} -le 0 ];then
|
||||
echo " "
|
||||
else
|
||||
echo "${key}=${value}"
|
||||
fi
|
||||
}
|
||||
function func_parser_params(){
|
||||
strs=$1
|
||||
IFS=":"
|
||||
array=(${strs})
|
||||
key=${array[0]}
|
||||
tmp=${array[1]}
|
||||
IFS="|"
|
||||
res=""
|
||||
for _params in ${tmp[*]}; do
|
||||
IFS="="
|
||||
array=(${_params})
|
||||
mode=${array[0]}
|
||||
value=${array[1]}
|
||||
if [[ ${mode} = ${MODE} ]]; then
|
||||
IFS="|"
|
||||
#echo $(func_set_params "${mode}" "${value}")
|
||||
echo $value
|
||||
break
|
||||
fi
|
||||
IFS="|"
|
||||
done
|
||||
echo ${res}
|
||||
}
|
||||
function status_check(){
|
||||
last_status=$1 # the exit code
|
||||
run_command=$2
|
||||
run_log=$3
|
||||
if [ $last_status -eq 0 ]; then
|
||||
echo -e "\033[33m Run successfully with command - ${run_command}! \033[0m" | tee -a ${run_log}
|
||||
else
|
||||
echo -e "\033[33m Run failed with command - ${run_command}! \033[0m" | tee -a ${run_log}
|
||||
fi
|
||||
}
|
||||
|
||||
IFS=$'\n'
|
||||
# The training params
|
||||
model_name=$(func_parser_value "${lines[1]}")
|
||||
python=$(func_parser_value "${lines[2]}")
|
||||
gpu_list=$(func_parser_value "${lines[3]}")
|
||||
train_use_gpu_key=$(func_parser_key "${lines[4]}")
|
||||
train_use_gpu_value=$(func_parser_value "${lines[4]}")
|
||||
autocast_list=$(func_parser_value "${lines[5]}")
|
||||
autocast_key=$(func_parser_key "${lines[5]}")
|
||||
epoch_key=$(func_parser_key "${lines[6]}")
|
||||
epoch_num=$(func_parser_params "${lines[6]}")
|
||||
save_model_key=$(func_parser_key "${lines[7]}")
|
||||
train_batch_key=$(func_parser_key "${lines[8]}")
|
||||
train_batch_value=$(func_parser_params "${lines[8]}")
|
||||
pretrain_model_key=$(func_parser_key "${lines[9]}")
|
||||
pretrain_model_value=$(func_parser_value "${lines[9]}")
|
||||
train_model_name=$(func_parser_value "${lines[10]}")
|
||||
train_infer_img_dir=$(func_parser_value "${lines[11]}")
|
||||
train_param_key1=$(func_parser_key "${lines[12]}")
|
||||
train_param_value1=$(func_parser_value "${lines[12]}")
|
||||
|
||||
trainer_list=$(func_parser_value "${lines[14]}")
|
||||
trainer_norm=$(func_parser_key "${lines[15]}")
|
||||
norm_trainer=$(func_parser_value "${lines[15]}")
|
||||
pact_key=$(func_parser_key "${lines[16]}")
|
||||
pact_trainer=$(func_parser_value "${lines[16]}")
|
||||
fpgm_key=$(func_parser_key "${lines[17]}")
|
||||
fpgm_trainer=$(func_parser_value "${lines[17]}")
|
||||
distill_key=$(func_parser_key "${lines[18]}")
|
||||
distill_trainer=$(func_parser_value "${lines[18]}")
|
||||
trainer_key1=$(func_parser_key "${lines[19]}")
|
||||
trainer_value1=$(func_parser_value "${lines[19]}")
|
||||
trainer_key2=$(func_parser_key "${lines[20]}")
|
||||
trainer_value2=$(func_parser_value "${lines[20]}")
|
||||
|
||||
eval_py=$(func_parser_value "${lines[23]}")
|
||||
eval_key1=$(func_parser_key "${lines[24]}")
|
||||
eval_value1=$(func_parser_value "${lines[24]}")
|
||||
|
||||
save_infer_key=$(func_parser_key "${lines[27]}")
|
||||
export_weight=$(func_parser_key "${lines[28]}")
|
||||
norm_export=$(func_parser_value "${lines[29]}")
|
||||
pact_export=$(func_parser_value "${lines[30]}")
|
||||
fpgm_export=$(func_parser_value "${lines[31]}")
|
||||
distill_export=$(func_parser_value "${lines[32]}")
|
||||
export_key1=$(func_parser_key "${lines[33]}")
|
||||
export_value1=$(func_parser_value "${lines[33]}")
|
||||
export_key2=$(func_parser_key "${lines[34]}")
|
||||
export_value2=$(func_parser_value "${lines[34]}")
|
||||
|
||||
# parser inference model
|
||||
infer_model_dir_list=$(func_parser_value "${lines[36]}")
|
||||
infer_export_list=$(func_parser_value "${lines[37]}")
|
||||
infer_is_quant=$(func_parser_value "${lines[38]}")
|
||||
# parser inference
|
||||
inference_py=$(func_parser_value "${lines[39]}")
|
||||
use_gpu_key=$(func_parser_key "${lines[40]}")
|
||||
use_gpu_list=$(func_parser_value "${lines[40]}")
|
||||
use_mkldnn_key=$(func_parser_key "${lines[41]}")
|
||||
use_mkldnn_list=$(func_parser_value "${lines[41]}")
|
||||
cpu_threads_key=$(func_parser_key "${lines[42]}")
|
||||
cpu_threads_list=$(func_parser_value "${lines[42]}")
|
||||
batch_size_key=$(func_parser_key "${lines[43]}")
|
||||
batch_size_list=$(func_parser_value "${lines[43]}")
|
||||
use_trt_key=$(func_parser_key "${lines[44]}")
|
||||
use_trt_list=$(func_parser_value "${lines[44]}")
|
||||
precision_key=$(func_parser_key "${lines[45]}")
|
||||
precision_list=$(func_parser_value "${lines[45]}")
|
||||
infer_model_key=$(func_parser_key "${lines[46]}")
|
||||
image_dir_key=$(func_parser_key "${lines[47]}")
|
||||
infer_img_dir=$(func_parser_value "${lines[47]}")
|
||||
save_log_key=$(func_parser_key "${lines[48]}")
|
||||
benchmark_key=$(func_parser_key "${lines[49]}")
|
||||
benchmark_value=$(func_parser_value "${lines[49]}")
|
||||
infer_key1=$(func_parser_key "${lines[50]}")
|
||||
infer_value1=$(func_parser_value "${lines[50]}")
|
||||
|
||||
# parser serving
|
||||
if [ ${MODE} = "klquant_infer" ]; then
|
||||
# parser inference model
|
||||
infer_model_dir_list=$(func_parser_value "${lines[1]}")
|
||||
infer_export_list=$(func_parser_value "${lines[2]}")
|
||||
infer_is_quant=$(func_parser_value "${lines[3]}")
|
||||
# parser inference
|
||||
inference_py=$(func_parser_value "${lines[4]}")
|
||||
use_gpu_key=$(func_parser_key "${lines[5]}")
|
||||
use_gpu_list=$(func_parser_value "${lines[5]}")
|
||||
use_mkldnn_key=$(func_parser_key "${lines[6]}")
|
||||
use_mkldnn_list=$(func_parser_value "${lines[6]}")
|
||||
cpu_threads_key=$(func_parser_key "${lines[7]}")
|
||||
cpu_threads_list=$(func_parser_value "${lines[7]}")
|
||||
batch_size_key=$(func_parser_key "${lines[8]}")
|
||||
batch_size_list=$(func_parser_value "${lines[8]}")
|
||||
use_trt_key=$(func_parser_key "${lines[9]}")
|
||||
use_trt_list=$(func_parser_value "${lines[9]}")
|
||||
precision_key=$(func_parser_key "${lines[10]}")
|
||||
precision_list=$(func_parser_value "${lines[10]}")
|
||||
infer_model_key=$(func_parser_key "${lines[11]}")
|
||||
image_dir_key=$(func_parser_key "${lines[12]}")
|
||||
infer_img_dir=$(func_parser_value "${lines[12]}")
|
||||
save_log_key=$(func_parser_key "${lines[13]}")
|
||||
benchmark_key=$(func_parser_key "${lines[14]}")
|
||||
benchmark_value=$(func_parser_value "${lines[14]}")
|
||||
infer_key1=$(func_parser_key "${lines[15]}")
|
||||
infer_value1=$(func_parser_value "${lines[15]}")
|
||||
fi
|
||||
# parser serving
|
||||
if [ ${MODE} = "server_infer" ]; then
|
||||
trans_model_py=$(func_parser_value "${lines[1]}")
|
||||
infer_model_dir_key=$(func_parser_key "${lines[2]}")
|
||||
infer_model_dir_value=$(func_parser_value "${lines[2]}")
|
||||
model_filename_key=$(func_parser_key "${lines[3]}")
|
||||
model_filename_value=$(func_parser_value "${lines[3]}")
|
||||
params_filename_key=$(func_parser_key "${lines[4]}")
|
||||
params_filename_value=$(func_parser_value "${lines[4]}")
|
||||
serving_server_key=$(func_parser_key "${lines[5]}")
|
||||
serving_server_value=$(func_parser_value "${lines[5]}")
|
||||
serving_client_key=$(func_parser_key "${lines[6]}")
|
||||
serving_client_value=$(func_parser_value "${lines[6]}")
|
||||
serving_dir_value=$(func_parser_value "${lines[7]}")
|
||||
web_service_py=$(func_parser_value "${lines[8]}")
|
||||
web_use_gpu_key=$(func_parser_key "${lines[9]}")
|
||||
web_use_gpu_list=$(func_parser_value "${lines[9]}")
|
||||
web_use_mkldnn_key=$(func_parser_key "${lines[10]}")
|
||||
web_use_mkldnn_list=$(func_parser_value "${lines[10]}")
|
||||
web_cpu_threads_key=$(func_parser_key "${lines[11]}")
|
||||
web_cpu_threads_list=$(func_parser_value "${lines[11]}")
|
||||
web_use_trt_key=$(func_parser_key "${lines[12]}")
|
||||
web_use_trt_list=$(func_parser_value "${lines[12]}")
|
||||
web_precision_key=$(func_parser_key "${lines[13]}")
|
||||
web_precision_list=$(func_parser_value "${lines[13]}")
|
||||
pipeline_py=$(func_parser_value "${lines[14]}")
|
||||
fi
|
||||
|
||||
if [ ${MODE} = "cpp_infer" ]; then
|
||||
# parser cpp inference model
|
||||
cpp_infer_model_dir_list=$(func_parser_value "${lines[1]}")
|
||||
cpp_infer_is_quant=$(func_parser_value "${lines[2]}")
|
||||
# parser cpp inference
|
||||
inference_cmd=$(func_parser_value "${lines[3]}")
|
||||
cpp_use_gpu_key=$(func_parser_key "${lines[4]}")
|
||||
cpp_use_gpu_list=$(func_parser_value "${lines[4]}")
|
||||
cpp_use_mkldnn_key=$(func_parser_key "${lines[5]}")
|
||||
cpp_use_mkldnn_list=$(func_parser_value "${lines[5]}")
|
||||
cpp_cpu_threads_key=$(func_parser_key "${lines[6]}")
|
||||
cpp_cpu_threads_list=$(func_parser_value "${lines[6]}")
|
||||
cpp_batch_size_key=$(func_parser_key "${lines[7]}")
|
||||
cpp_batch_size_list=$(func_parser_value "${lines[7]}")
|
||||
cpp_use_trt_key=$(func_parser_key "${lines[8]}")
|
||||
cpp_use_trt_list=$(func_parser_value "${lines[8]}")
|
||||
cpp_precision_key=$(func_parser_key "${lines[9]}")
|
||||
cpp_precision_list=$(func_parser_value "${lines[9]}")
|
||||
cpp_infer_model_key=$(func_parser_key "${lines[10]}")
|
||||
cpp_image_dir_key=$(func_parser_key "${lines[11]}")
|
||||
cpp_infer_img_dir=$(func_parser_value "${lines[12]}")
|
||||
cpp_infer_key1=$(func_parser_key "${lines[13]}")
|
||||
cpp_infer_value1=$(func_parser_value "${lines[13]}")
|
||||
cpp_benchmark_key=$(func_parser_key "${lines[14]}")
|
||||
cpp_benchmark_value=$(func_parser_value "${lines[14]}")
|
||||
fi
|
||||
|
||||
|
||||
|
||||
LOG_PATH="./tests/output"
|
||||
mkdir -p ${LOG_PATH}
|
||||
status_log="${LOG_PATH}/results.log"
|
||||
|
||||
|
||||
function func_inference(){
|
||||
IFS='|'
|
||||
_python=$1
|
||||
_script=$2
|
||||
_model_dir=$3
|
||||
_log_path=$4
|
||||
_img_dir=$5
|
||||
_flag_quant=$6
|
||||
# inference
|
||||
for use_gpu in ${use_gpu_list[*]}; do
|
||||
if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
|
||||
for use_mkldnn in ${use_mkldnn_list[*]}; do
|
||||
if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
|
||||
continue
|
||||
fi
|
||||
for threads in ${cpu_threads_list[*]}; do
|
||||
for batch_size in ${batch_size_list[*]}; do
|
||||
_save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
|
||||
set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
|
||||
set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
|
||||
set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
|
||||
set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
|
||||
set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
|
||||
set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
|
||||
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
|
||||
eval $command
|
||||
last_status=${PIPESTATUS[0]}
|
||||
eval "cat ${_save_log_path}"
|
||||
status_check $last_status "${command}" "${status_log}"
|
||||
done
|
||||
done
|
||||
done
|
||||
elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
|
||||
for use_trt in ${use_trt_list[*]}; do
|
||||
for precision in ${precision_list[*]}; do
|
||||
if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
|
||||
continue
|
||||
fi
|
||||
if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
|
||||
continue
|
||||
fi
|
||||
if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
|
||||
continue
|
||||
fi
|
||||
for batch_size in ${batch_size_list[*]}; do
|
||||
_save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
|
||||
set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
|
||||
set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
|
||||
set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
|
||||
set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}")
|
||||
set_precision=$(func_set_params "${precision_key}" "${precision}")
|
||||
set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
|
||||
set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
|
||||
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
|
||||
eval $command
|
||||
last_status=${PIPESTATUS[0]}
|
||||
eval "cat ${_save_log_path}"
|
||||
status_check $last_status "${command}" "${status_log}"
|
||||
|
||||
done
|
||||
done
|
||||
done
|
||||
else
|
||||
echo "Does not support hardware other than CPU and GPU Currently!"
|
||||
fi
|
||||
done
|
||||
}
|
||||
function func_serving(){
|
||||
IFS='|'
|
||||
_python=$1
|
||||
_script=$2
|
||||
_model_dir=$3
|
||||
# pdserving
|
||||
set_dirname=$(func_set_params "${infer_model_dir_key}" "${infer_model_dir_value}")
|
||||
set_model_filename=$(func_set_params "${model_filename_key}" "${model_filename_value}")
|
||||
set_params_filename=$(func_set_params "${params_filename_key}" "${params_filename_value}")
|
||||
set_serving_server=$(func_set_params "${serving_server_key}" "${serving_server_value}")
|
||||
set_serving_client=$(func_set_params "${serving_client_key}" "${serving_client_value}")
|
||||
trans_model_cmd="${python} ${trans_model_py} ${set_dirname} ${set_model_filename} ${set_params_filename} ${set_serving_server} ${set_serving_client}"
|
||||
eval $trans_model_cmd
|
||||
cd ${serving_dir_value}
|
||||
echo $PWD
|
||||
unset https_proxy
|
||||
unset http_proxy
|
||||
for use_gpu in ${web_use_gpu_list[*]}; do
|
||||
echo ${ues_gpu}
|
||||
if [ ${use_gpu} = "null" ]; then
|
||||
for use_mkldnn in ${web_use_mkldnn_list[*]}; do
|
||||
if [ ${use_mkldnn} = "False" ]; then
|
||||
continue
|
||||
fi
|
||||
for threads in ${web_cpu_threads_list[*]}; do
|
||||
_save_log_path="${_log_path}/server_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_1.log"
|
||||
set_cpu_threads=$(func_set_params "${web_cpu_threads_key}" "${threads}")
|
||||
web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${web_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} &>${_save_log_path} &"
|
||||
eval $web_service_cmd
|
||||
sleep 2s
|
||||
pipeline_cmd="${python} ${pipeline_py}"
|
||||
eval $pipeline_cmd
|
||||
last_status=${PIPESTATUS[0]}
|
||||
eval "cat ${_save_log_path}"
|
||||
status_check $last_status "${pipeline_cmd}" "${status_log}"
|
||||
PID=$!
|
||||
kill $PID
|
||||
sleep 2s
|
||||
ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9
|
||||
done
|
||||
done
|
||||
elif [ ${use_gpu} = "0" ]; then
|
||||
for use_trt in ${web_use_trt_list[*]}; do
|
||||
for precision in ${web_precision_list[*]}; do
|
||||
if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
|
||||
continue
|
||||
fi
|
||||
if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
|
||||
continue
|
||||
fi
|
||||
if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [[ ${_flag_quant} = "True" ]]; then
|
||||
continue
|
||||
fi
|
||||
_save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_1.log"
|
||||
set_tensorrt=$(func_set_params "${web_use_trt_key}" "${use_trt}")
|
||||
set_precision=$(func_set_params "${web_precision_key}" "${precision}")
|
||||
web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} &>${_save_log_path} & "
|
||||
eval $web_service_cmd
|
||||
sleep 2s
|
||||
pipeline_cmd="${python} ${pipeline_py}"
|
||||
eval $pipeline_cmd
|
||||
last_status=${PIPESTATUS[0]}
|
||||
eval "cat ${_save_log_path}"
|
||||
status_check $last_status "${pipeline_cmd}" "${status_log}"
|
||||
PID=$!
|
||||
kill $PID
|
||||
sleep 2s
|
||||
ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9
|
||||
done
|
||||
done
|
||||
else
|
||||
echo "Does not support hardware other than CPU and GPU Currently!"
|
||||
fi
|
||||
done
|
||||
}
|
||||
|
||||
function func_cpp_inference(){
|
||||
IFS='|'
|
||||
_script=$1
|
||||
_model_dir=$2
|
||||
_log_path=$3
|
||||
_img_dir=$4
|
||||
_flag_quant=$5
|
||||
# inference
|
||||
for use_gpu in ${cpp_use_gpu_list[*]}; do
|
||||
if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
|
||||
for use_mkldnn in ${cpp_use_mkldnn_list[*]}; do
|
||||
if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
|
||||
continue
|
||||
fi
|
||||
for threads in ${cpp_cpu_threads_list[*]}; do
|
||||
for batch_size in ${cpp_batch_size_list[*]}; do
|
||||
_save_log_path="${_log_path}/cpp_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
|
||||
set_infer_data=$(func_set_params "${cpp_image_dir_key}" "${_img_dir}")
|
||||
set_benchmark=$(func_set_params "${cpp_benchmark_key}" "${cpp_benchmark_value}")
|
||||
set_batchsize=$(func_set_params "${cpp_batch_size_key}" "${batch_size}")
|
||||
set_cpu_threads=$(func_set_params "${cpp_cpu_threads_key}" "${threads}")
|
||||
set_model_dir=$(func_set_params "${cpp_infer_model_key}" "${_model_dir}")
|
||||
set_infer_params1=$(func_set_params "${cpp_infer_key1}" "${cpp_infer_value1}")
|
||||
command="${_script} ${cpp_use_gpu_key}=${use_gpu} ${cpp_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
|
||||
eval $command
|
||||
last_status=${PIPESTATUS[0]}
|
||||
eval "cat ${_save_log_path}"
|
||||
status_check $last_status "${command}" "${status_log}"
|
||||
done
|
||||
done
|
||||
done
|
||||
elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
|
||||
for use_trt in ${cpp_use_trt_list[*]}; do
|
||||
for precision in ${cpp_precision_list[*]}; do
|
||||
if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
|
||||
continue
|
||||
fi
|
||||
if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
|
||||
continue
|
||||
fi
|
||||
if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
|
||||
continue
|
||||
fi
|
||||
for batch_size in ${cpp_batch_size_list[*]}; do
|
||||
_save_log_path="${_log_path}/cpp_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
|
||||
set_infer_data=$(func_set_params "${cpp_image_dir_key}" "${_img_dir}")
|
||||
set_benchmark=$(func_set_params "${cpp_benchmark_key}" "${cpp_benchmark_value}")
|
||||
set_batchsize=$(func_set_params "${cpp_batch_size_key}" "${batch_size}")
|
||||
set_tensorrt=$(func_set_params "${cpp_use_trt_key}" "${use_trt}")
|
||||
set_precision=$(func_set_params "${cpp_precision_key}" "${precision}")
|
||||
set_model_dir=$(func_set_params "${cpp_infer_model_key}" "${_model_dir}")
|
||||
set_infer_params1=$(func_set_params "${cpp_infer_key1}" "${cpp_infer_value1}")
|
||||
command="${_script} ${cpp_use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
|
||||
eval $command
|
||||
last_status=${PIPESTATUS[0]}
|
||||
eval "cat ${_save_log_path}"
|
||||
status_check $last_status "${command}" "${status_log}"
|
||||
|
||||
done
|
||||
done
|
||||
done
|
||||
else
|
||||
echo "Does not support hardware other than CPU and GPU Currently!"
|
||||
fi
|
||||
done
|
||||
}
|
||||
|
||||
if [ ${MODE} = "infer" ] || [ ${MODE} = "klquant_infer" ]; then
|
||||
GPUID=$3
|
||||
if [ ${#GPUID} -le 0 ];then
|
||||
env=" "
|
||||
else
|
||||
env="export CUDA_VISIBLE_DEVICES=${GPUID}"
|
||||
fi
|
||||
# set CUDA_VISIBLE_DEVICES
|
||||
eval $env
|
||||
export Count=0
|
||||
IFS="|"
|
||||
infer_run_exports=(${infer_export_list})
|
||||
infer_quant_flag=(${infer_is_quant})
|
||||
for infer_model in ${infer_model_dir_list[*]}; do
|
||||
# run export
|
||||
if [ ${infer_run_exports[Count]} != "null" ];then
|
||||
save_infer_dir=$(dirname $infer_model)
|
||||
set_export_weight=$(func_set_params "${export_weight}" "${infer_model}")
|
||||
set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}")
|
||||
export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key}"
|
||||
echo ${infer_run_exports[Count]}
|
||||
echo $export_cmd
|
||||
eval $export_cmd
|
||||
status_export=$?
|
||||
status_check $status_export "${export_cmd}" "${status_log}"
|
||||
else
|
||||
save_infer_dir=${infer_model}
|
||||
fi
|
||||
#run inference
|
||||
is_quant=${infer_quant_flag[Count]}
|
||||
func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant}
|
||||
Count=$(($Count + 1))
|
||||
done
|
||||
elif [ ${MODE} = "cpp_infer" ]; then
|
||||
GPUID=$3
|
||||
if [ ${#GPUID} -le 0 ];then
|
||||
env=" "
|
||||
else
|
||||
env="export CUDA_VISIBLE_DEVICES=${GPUID}"
|
||||
fi
|
||||
# set CUDA_VISIBLE_DEVICES
|
||||
eval $env
|
||||
export Count=0
|
||||
IFS="|"
|
||||
infer_quant_flag=(${cpp_infer_is_quant})
|
||||
for infer_model in ${cpp_infer_model_dir_list[*]}; do
|
||||
#run inference
|
||||
is_quant=${infer_quant_flag[Count]}
|
||||
func_cpp_inference "${inference_cmd}" "${infer_model}" "${LOG_PATH}" "${cpp_infer_img_dir}" ${is_quant}
|
||||
Count=$(($Count + 1))
|
||||
done
|
||||
|
||||
elif [ ${MODE} = "serving_infer" ]; then
|
||||
GPUID=$3
|
||||
if [ ${#GPUID} -le 0 ];then
|
||||
env=" "
|
||||
else
|
||||
env="export CUDA_VISIBLE_DEVICES=${GPUID}"
|
||||
fi
|
||||
# set CUDA_VISIBLE_DEVICES
|
||||
eval $env
|
||||
export Count=0
|
||||
IFS="|"
|
||||
#run serving
|
||||
func_serving "${web_service_cmd}"
|
||||
|
||||
|
||||
|
||||
else
|
||||
IFS="|"
|
||||
export Count=0
|
||||
USE_GPU_KEY=(${train_use_gpu_value})
|
||||
for gpu in ${gpu_list[*]}; do
|
||||
use_gpu=${USE_GPU_KEY[Count]}
|
||||
Count=$(($Count + 1))
|
||||
if [ ${gpu} = "-1" ];then
|
||||
env=""
|
||||
elif [ ${#gpu} -le 1 ];then
|
||||
env="export CUDA_VISIBLE_DEVICES=${gpu}"
|
||||
eval ${env}
|
||||
elif [ ${#gpu} -le 15 ];then
|
||||
IFS=","
|
||||
array=(${gpu})
|
||||
env="export CUDA_VISIBLE_DEVICES=${array[0]}"
|
||||
IFS="|"
|
||||
else
|
||||
IFS=";"
|
||||
array=(${gpu})
|
||||
ips=${array[0]}
|
||||
gpu=${array[1]}
|
||||
IFS="|"
|
||||
env=" "
|
||||
fi
|
||||
for autocast in ${autocast_list[*]}; do
|
||||
for trainer in ${trainer_list[*]}; do
|
||||
flag_quant=False
|
||||
if [ ${trainer} = ${pact_key} ]; then
|
||||
run_train=${pact_trainer}
|
||||
run_export=${pact_export}
|
||||
flag_quant=True
|
||||
elif [ ${trainer} = "${fpgm_key}" ]; then
|
||||
run_train=${fpgm_trainer}
|
||||
run_export=${fpgm_export}
|
||||
elif [ ${trainer} = "${distill_key}" ]; then
|
||||
run_train=${distill_trainer}
|
||||
run_export=${distill_export}
|
||||
elif [ ${trainer} = ${trainer_key1} ]; then
|
||||
run_train=${trainer_value1}
|
||||
run_export=${export_value1}
|
||||
elif [[ ${trainer} = ${trainer_key2} ]]; then
|
||||
run_train=${trainer_value2}
|
||||
run_export=${export_value2}
|
||||
else
|
||||
run_train=${norm_trainer}
|
||||
run_export=${norm_export}
|
||||
fi
|
||||
|
||||
if [ ${run_train} = "null" ]; then
|
||||
continue
|
||||
fi
|
||||
|
||||
set_autocast=$(func_set_params "${autocast_key}" "${autocast}")
|
||||
set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}")
|
||||
set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
|
||||
set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
|
||||
set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
|
||||
set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}")
|
||||
save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
|
||||
|
||||
# load pretrain from norm training if current trainer is pact or fpgm trainer
|
||||
if [ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]; then
|
||||
set_pretrain="${load_norm_train_model}"
|
||||
fi
|
||||
|
||||
set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
|
||||
if [ ${#gpu} -le 2 ];then # train with cpu or single gpu
|
||||
cmd="${python} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} "
|
||||
elif [ ${#gpu} -le 15 ];then # train with multi-gpu
|
||||
cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}"
|
||||
else # train with multi-machine
|
||||
cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}"
|
||||
fi
|
||||
# run train
|
||||
eval "unset CUDA_VISIBLE_DEVICES"
|
||||
eval $cmd
|
||||
status_check $? "${cmd}" "${status_log}"
|
||||
|
||||
set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}")
|
||||
# save norm trained models to set pretrain for pact training and fpgm training
|
||||
if [ ${trainer} = ${trainer_norm} ]; then
|
||||
load_norm_train_model=${set_eval_pretrain}
|
||||
fi
|
||||
# run eval
|
||||
if [ ${eval_py} != "null" ]; then
|
||||
set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}")
|
||||
eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}"
|
||||
eval $eval_cmd
|
||||
status_check $? "${eval_cmd}" "${status_log}"
|
||||
fi
|
||||
# run export model
|
||||
if [ ${run_export} != "null" ]; then
|
||||
# run export model
|
||||
save_infer_path="${save_log}"
|
||||
set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${train_model_name}")
|
||||
set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}")
|
||||
export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key}"
|
||||
eval $export_cmd
|
||||
status_check $? "${export_cmd}" "${status_log}"
|
||||
|
||||
#run inference
|
||||
eval $env
|
||||
save_infer_path="${save_log}"
|
||||
func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}"
|
||||
eval "unset CUDA_VISIBLE_DEVICES"
|
||||
fi
|
||||
done # done with: for trainer in ${trainer_list[*]}; do
|
||||
done # done with: for autocast in ${autocast_list[*]}; do
|
||||
done # done with: for gpu in ${gpu_list[*]}; do
|
||||
fi # end if [ ${MODE} = "infer" ]; then
|
|
@ -2,7 +2,14 @@
|
|||
source tests/common_func.sh
|
||||
|
||||
FILENAME=$1
|
||||
dataline=$(awk 'NR==1, NR==51{print}' $FILENAME)
|
||||
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer', 'klquant_infer']
|
||||
MODE=$2
|
||||
|
||||
if [ ${MODE} = "klquant_infer" ]; then
|
||||
dataline=$(awk 'NR==82, NR==98{print}' $FILENAME)
|
||||
else
|
||||
dataline=$(awk 'NR==1, NR==51{print}' $FILENAME)
|
||||
fi
|
||||
|
||||
# parser params
|
||||
IFS=$'\n'
|
||||
|
@ -84,6 +91,35 @@ benchmark_value=$(func_parser_value "${lines[49]}")
|
|||
infer_key1=$(func_parser_key "${lines[50]}")
|
||||
infer_value1=$(func_parser_value "${lines[50]}")
|
||||
|
||||
# parser klquant_infer
|
||||
if [ ${MODE} = "klquant_infer" ]; then
|
||||
# parser inference model
|
||||
infer_model_dir_list=$(func_parser_value "${lines[1]}")
|
||||
infer_export_list=$(func_parser_value "${lines[2]}")
|
||||
infer_is_quant=$(func_parser_value "${lines[3]}")
|
||||
# parser inference
|
||||
inference_py=$(func_parser_value "${lines[4]}")
|
||||
use_gpu_key=$(func_parser_key "${lines[5]}")
|
||||
use_gpu_list=$(func_parser_value "${lines[5]}")
|
||||
use_mkldnn_key=$(func_parser_key "${lines[6]}")
|
||||
use_mkldnn_list=$(func_parser_value "${lines[6]}")
|
||||
cpu_threads_key=$(func_parser_key "${lines[7]}")
|
||||
cpu_threads_list=$(func_parser_value "${lines[7]}")
|
||||
batch_size_key=$(func_parser_key "${lines[8]}")
|
||||
batch_size_list=$(func_parser_value "${lines[8]}")
|
||||
use_trt_key=$(func_parser_key "${lines[9]}")
|
||||
use_trt_list=$(func_parser_value "${lines[9]}")
|
||||
precision_key=$(func_parser_key "${lines[10]}")
|
||||
precision_list=$(func_parser_value "${lines[10]}")
|
||||
infer_model_key=$(func_parser_key "${lines[11]}")
|
||||
image_dir_key=$(func_parser_key "${lines[12]}")
|
||||
infer_img_dir=$(func_parser_value "${lines[12]}")
|
||||
save_log_key=$(func_parser_key "${lines[13]}")
|
||||
benchmark_key=$(func_parser_key "${lines[14]}")
|
||||
benchmark_value=$(func_parser_value "${lines[14]}")
|
||||
infer_key1=$(func_parser_key "${lines[15]}")
|
||||
infer_value1=$(func_parser_value "${lines[15]}")
|
||||
fi
|
||||
|
||||
LOG_PATH="./tests/output"
|
||||
mkdir -p ${LOG_PATH}
|
||||
|
@ -107,7 +143,7 @@ function func_inference(){
|
|||
fi
|
||||
for threads in ${cpu_threads_list[*]}; do
|
||||
for batch_size in ${batch_size_list[*]}; do
|
||||
_save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
|
||||
_save_log_path="${_log_path}/python_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
|
||||
set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
|
||||
set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
|
||||
set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
|
||||
|
@ -135,7 +171,7 @@ function func_inference(){
|
|||
continue
|
||||
fi
|
||||
for batch_size in ${batch_size_list[*]}; do
|
||||
_save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
|
||||
_save_log_path="${_log_path}/python_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
|
||||
set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
|
||||
set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
|
||||
set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
|
||||
|
@ -158,16 +194,148 @@ function func_inference(){
|
|||
done
|
||||
}
|
||||
|
||||
|
||||
# set cuda device
|
||||
GPUID=$2
|
||||
if [ ${#GPUID} -le 0 ];then
|
||||
env=" "
|
||||
if [ ${MODE} = "infer" ] || [ ${MODE} = "klquant_infer" ]; then
|
||||
GPUID=$3
|
||||
if [ ${#GPUID} -le 0 ];then
|
||||
env=" "
|
||||
else
|
||||
env="export CUDA_VISIBLE_DEVICES=${GPUID}"
|
||||
fi
|
||||
# set CUDA_VISIBLE_DEVICES
|
||||
eval $env
|
||||
export Count=0
|
||||
IFS="|"
|
||||
infer_run_exports=(${infer_export_list})
|
||||
infer_quant_flag=(${infer_is_quant})
|
||||
for infer_model in ${infer_model_dir_list[*]}; do
|
||||
# run export
|
||||
if [ ${infer_run_exports[Count]} != "null" ];then
|
||||
save_infer_dir=$(dirname $infer_model)
|
||||
set_export_weight=$(func_set_params "${export_weight}" "${infer_model}")
|
||||
set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}")
|
||||
export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key}"
|
||||
echo ${infer_run_exports[Count]}
|
||||
echo $export_cmd
|
||||
eval $export_cmd
|
||||
status_export=$?
|
||||
status_check $status_export "${export_cmd}" "${status_log}"
|
||||
else
|
||||
save_infer_dir=${infer_model}
|
||||
fi
|
||||
#run inference
|
||||
is_quant=${infer_quant_flag[Count]}
|
||||
func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant}
|
||||
Count=$(($Count + 1))
|
||||
done
|
||||
else
|
||||
env="export CUDA_VISIBLE_DEVICES=${GPUID}"
|
||||
fi
|
||||
set CUDA_VISIBLE_DEVICES
|
||||
eval $env
|
||||
IFS="|"
|
||||
export Count=0
|
||||
USE_GPU_KEY=(${train_use_gpu_value})
|
||||
for gpu in ${gpu_list[*]}; do
|
||||
use_gpu=${USE_GPU_KEY[Count]}
|
||||
Count=$(($Count + 1))
|
||||
if [ ${gpu} = "-1" ];then
|
||||
env=""
|
||||
elif [ ${#gpu} -le 1 ];then
|
||||
env="export CUDA_VISIBLE_DEVICES=${gpu}"
|
||||
eval ${env}
|
||||
elif [ ${#gpu} -le 15 ];then
|
||||
IFS=","
|
||||
array=(${gpu})
|
||||
env="export CUDA_VISIBLE_DEVICES=${array[0]}"
|
||||
IFS="|"
|
||||
else
|
||||
IFS=";"
|
||||
array=(${gpu})
|
||||
ips=${array[0]}
|
||||
gpu=${array[1]}
|
||||
IFS="|"
|
||||
env=" "
|
||||
fi
|
||||
for autocast in ${autocast_list[*]}; do
|
||||
for trainer in ${trainer_list[*]}; do
|
||||
flag_quant=False
|
||||
if [ ${trainer} = ${pact_key} ]; then
|
||||
run_train=${pact_trainer}
|
||||
run_export=${pact_export}
|
||||
flag_quant=True
|
||||
elif [ ${trainer} = "${fpgm_key}" ]; then
|
||||
run_train=${fpgm_trainer}
|
||||
run_export=${fpgm_export}
|
||||
elif [ ${trainer} = "${distill_key}" ]; then
|
||||
run_train=${distill_trainer}
|
||||
run_export=${distill_export}
|
||||
elif [ ${trainer} = ${trainer_key1} ]; then
|
||||
run_train=${trainer_value1}
|
||||
run_export=${export_value1}
|
||||
elif [[ ${trainer} = ${trainer_key2} ]]; then
|
||||
run_train=${trainer_value2}
|
||||
run_export=${export_value2}
|
||||
else
|
||||
run_train=${norm_trainer}
|
||||
run_export=${norm_export}
|
||||
fi
|
||||
|
||||
if [ ${run_train} = "null" ]; then
|
||||
continue
|
||||
fi
|
||||
|
||||
set_autocast=$(func_set_params "${autocast_key}" "${autocast}")
|
||||
set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}")
|
||||
set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
|
||||
set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
|
||||
set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
|
||||
set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}")
|
||||
save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
|
||||
|
||||
# load pretrain from norm training if current trainer is pact or fpgm trainer
|
||||
if [ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]; then
|
||||
set_pretrain="${load_norm_train_model}"
|
||||
fi
|
||||
|
||||
set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
|
||||
if [ ${#gpu} -le 2 ];then # train with cpu or single gpu
|
||||
cmd="${python} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} "
|
||||
elif [ ${#gpu} -le 15 ];then # train with multi-gpu
|
||||
cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}"
|
||||
else # train with multi-machine
|
||||
cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}"
|
||||
fi
|
||||
# run train
|
||||
eval "unset CUDA_VISIBLE_DEVICES"
|
||||
eval $cmd
|
||||
status_check $? "${cmd}" "${status_log}"
|
||||
|
||||
set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}")
|
||||
# save norm trained models to set pretrain for pact training and fpgm training
|
||||
if [ ${trainer} = ${trainer_norm} ]; then
|
||||
load_norm_train_model=${set_eval_pretrain}
|
||||
fi
|
||||
# run eval
|
||||
if [ ${eval_py} != "null" ]; then
|
||||
set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}")
|
||||
eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}"
|
||||
eval $eval_cmd
|
||||
status_check $? "${eval_cmd}" "${status_log}"
|
||||
fi
|
||||
# run export model
|
||||
if [ ${run_export} != "null" ]; then
|
||||
# run export model
|
||||
save_infer_path="${save_log}"
|
||||
set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${train_model_name}")
|
||||
set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}")
|
||||
export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key}"
|
||||
eval $export_cmd
|
||||
status_check $? "${export_cmd}" "${status_log}"
|
||||
|
||||
#run inference
|
||||
eval $env
|
||||
save_infer_path="${save_log}"
|
||||
func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}"
|
||||
eval "unset CUDA_VISIBLE_DEVICES"
|
||||
fi
|
||||
done # done with: for trainer in ${trainer_list[*]}; do
|
||||
done # done with: for autocast in ${autocast_list[*]}; do
|
||||
done # done with: for gpu in ${gpu_list[*]}; do
|
||||
fi # end if [ ${MODE} = "infer" ]; then
|
||||
|
||||
echo "################### run test ###################"
|
||||
|
|
|
@ -141,7 +141,6 @@ if __name__ == "__main__":
|
|||
img, flag = check_and_read_gif(image_file)
|
||||
if not flag:
|
||||
img = cv2.imread(image_file)
|
||||
img = img[:, :, ::-1]
|
||||
if img is None:
|
||||
logger.info("error in loading image:{}".format(image_file))
|
||||
continue
|
||||
|
|
Loading…
Reference in New Issue