Merge branch 'dygraph' into android_demo

This commit is contained in:
zhoujun 2021-04-09 07:55:14 -05:00 committed by GitHub
commit 3d7f340386
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 28 additions and 31 deletions

View File

@ -8,9 +8,10 @@ PaddleOCR同时支持动态图与静态图两种编程范式
- 静态图版本develop分支
**近期更新**
- 【预告】 PaddleOCR研发团队对最新发版内容技术深入解读4月13日晚上19:00[直播地址](https://live.bilibili.com/21689802)
- 2021.4.8 release 2.1版本新增AAAI 2021论文[端到端识别算法PGNet](./doc/doc_ch/pgnet.md)开源,[多语言模型](./doc/doc_ch/multi_languages.md)支持种类增加到80+。
- 2021.2.1 [FAQ](./doc/doc_ch/FAQ.md)新增5个高频问题总数162个每周一都会更新欢迎大家持续关注。
- 2021.1.26,28,29 PaddleOCR官方研发团队带来技术深入解读三日直播课1月26日、28日、29日晚上19:30[直播地址](https://live.bilibili.com/21689802)
- 2021.1.21 更新多语言识别模型目前支持语种超过27种[多语言模型下载](./doc/doc_ch/models_list.md),包括中文简体、中文繁体、英文、法文、德文、韩文、日文、意大利文、西班牙文、葡萄牙文、俄罗斯文、阿拉伯文等,后续计划可以参考[多语言研发计划](https://github.com/PaddlePaddle/PaddleOCR/issues/1048)
- 2021.1.21 更新多语言识别模型目前支持语种超过27种包括中文简体、中文繁体、英文、法文、德文、韩文、日文、意大利文、西班牙文、葡萄牙文、俄罗斯文、阿拉伯文等后续计划可以参考[多语言研发计划](https://github.com/PaddlePaddle/PaddleOCR/issues/1048)
- 2020.12.15 更新数据合成工具[Style-Text](./StyleText/README_ch.md),可以批量合成大量与目标场景类似的图像,在多个场景验证,效果明显提升。
- 2020.11.25 更新半自动标注工具[PPOCRLabel](./PPOCRLabel/README_ch.md)辅助开发者高效完成标注任务输出格式与PP-OCR训练任务完美衔接。
- 2020.9.22 更新PP-OCR技术文章https://arxiv.org/abs/2009.09941
@ -74,11 +75,13 @@ PaddleOCR同时支持动态图与静态图两种编程范式
## 文档教程
- [快速安装](./doc/doc_ch/installation.md)
- [中文OCR模型快速使用](./doc/doc_ch/quickstart.md)
- [多语言OCR模型快速使用](./doc/doc_ch/multi_languages.md)
- [代码组织结构](./doc/doc_ch/tree.md)
- 算法介绍
- [文本检测](./doc/doc_ch/algorithm_overview.md)
- [文本识别](./doc/doc_ch/algorithm_overview.md)
- [PP-OCR Pipline](#PP-OCR)
- [端到端PGNet算法](./doc/doc_ch/pgnet.md)
- 模型训练/评估
- [文本检测](./doc/doc_ch/detection.md)
- [文本识别](./doc/doc_ch/recognition.md)

View File

@ -2,12 +2,10 @@
- [一、简介](#简介)
- [二、环境配置](#环境配置)
- [三、快速使用](#快速使用)
- [四、快速训练](#开始训练)
- [五、预测推理](#预测推理)
- [四、模型训练、评估、推理](#快速训练)
<a name="简介"></a>
##简介
## 一、简介
OCR算法可以分为两阶段算法和端对端的算法。二阶段OCR算法一般分为两个部分文本检测和文本识别算法文件检测算法从图像中得到文本行的检测框然后识别算法去识别文本框中的内容。而端对端OCR算法可以在一个算法中完成文字检测和文字识别其基本思想是设计一个同时具有检测单元和识别模块的模型共享其中两者的CNN特征并联合训练。由于一个算法即可完成文字识别端对端模型更小速度更快。
### PGNet算法介绍
@ -27,13 +25,11 @@ PGNet算法细节详见[论文](https://www.aaai.org/AAAI21Papers/AAAI-2885.Wang
![](../imgs_results/e2e_res_img295_pgnet.png)
<a name="环境配置"></a>
##环境配置
## 二、环境配置
请先参考[快速安装](./installation.md)配置PaddleOCR运行环境。
*注意:也可以通过 whl 包安装使用PaddleOCR具体参考[Paddleocr Package使用说明](./whl.md)。*
<a name="快速使用"></a>
##快速使用
## 三、快速使用
### inference模型下载
本节以训练好的端到端模型为例快速使用模型预测首先下载训练好的端到端inference模型[下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/e2e_server_pgnetA_infer.tar)
```
@ -61,20 +57,25 @@ python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/im
# 如果想使用CPU进行预测需设置use_gpu参数为False
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e/" --e2e_pgnet_polygon=True --use_gpu=False
```
<a name="开始训练"></a>
##开始训练
### 可视化结果
可视化文本检测结果默认保存到./inference_results文件夹里面结果文件的名称前缀为'e2e_res'。结果示例如下:
![](../imgs_results/e2e_res_img623_pgnet.jpg)
<a name="快速训练"></a>
## 四、模型训练、评估、推理
本节以totaltext数据集为例介绍PaddleOCR中端到端模型的训练、评估与测试。
###数据形式为icdar, 十六点标注数据
解压数据集和下载标注文件后PaddleOCR/train_data/total_text/train/ 有两个文件夹,分别是:
### 准备数据
下载解压[totaltext](https://github.com/cs-chan/Total-Text-Dataset/blob/master/Dataset/README.md)数据集到PaddleOCR/train_data/目录,数据集组织结构:
```
/PaddleOCR/train_data/total_text/train/
|- rgb/ total_text数据集的训练数据
|- rgb/ # total_text数据集的训练数据
|- gt_0.png
| ...
|- total_text.txt total_text数据集的训练标注
|- total_text.txt # total_text数据集的训练标注
```
提供的标注文件格式如下,中间用"\t"分隔:
total_text.txt标注文件格式如下文件名和标注信息中间用"\t"分隔:
```
" 图像文件名 json.dumps编码的图像标注信息"
rgb/gt_0.png [{"transcription": "EST", "points": [[1004.0,689.0],[1019.0,698.0],[1034.0,708.0],[1049.0,718.0],[1064.0,728.0],[1079.0,738.0],[1095.0,748.0],[1094.0,774.0],[1079.0,765.0],[1065.0,756.0],[1050.0,747.0],[1036.0,738.0],[1021.0,729.0],[1007.0,721.0]]}, {...}]
@ -83,22 +84,19 @@ json.dumps编码前的图像标注信息是包含多个字典的list字典中
`transcription` 表示当前文本框的文字,**当其内容为“###”时,表示该文本框无效,在训练时会跳过。**
如果您想在其他数据集上训练,可以按照上述形式构建标注文件。
### 快速启动训练
### 启动训练
模型训练一般分两步骤进行,第一步可以选择用合成数据训练,第二步加载第一步训练好的模型训练,这边我们提供了第一步训练好的模型,可以直接加载,从第二步开始训练
[下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/train_step1.tar)
PGNet训练分为两个步骤step1: 在合成数据上训练得到预训练模型此时模型精度依然较低step2: 加载预训练模型在totaltext数据集上训练为快速训练我们直接提供了step1的预训练模型。
```shell
cd PaddleOCR/
下载ResNet50_vd的动态图预训练模型
下载step1 预训练模型
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/train_step1.tar
可以得到以下的文件格式
./pretrain_models/train_step1/
└─ best_accuracy.pdopt
└─ best_accuracy.states
└─ best_accuracy.pdparams
```
*如果您安装的是cpu版本请将配置文件中的 `use_gpu` 字段修改为false*
```shell
@ -117,7 +115,6 @@ python3 tools/train.py -c configs/e2e/e2e_r50_vd_pg.yml -o Optimizer.base_lr=0.0
```
#### 断点训练
如果训练程序中断如果希望加载训练中断的模型从而恢复训练可以通过指定Global.checkpoints指定要加载的模型路径
```shell
python3 tools/train.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.checkpoints=./your/trained/model
@ -125,9 +122,6 @@ python3 tools/train.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.checkpoints=./
**注意**`Global.checkpoints`的优先级高于`Global.pretrain_weights`的优先级,即同时指定两个参数时,优先加载`Global.checkpoints`指定的模型,如果`Global.checkpoints`指定的模型路径有误,会加载`Global.pretrain_weights`指定的模型。
<a name="预测推理"></a>
## 预测推理
PaddleOCR计算三个OCR端到端相关的指标分别是Precision、Recall、Hmean。
运行如下代码,根据配置文件`e2e_r50_vd_pg.yml`中`save_res_path`指定的测试集检测结果文件,计算评估指标。
@ -138,7 +132,7 @@ PaddleOCR计算三个OCR端到端相关的指标分别是Precision、Recal
python3 tools/eval.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.checkpoints="{path/to/weights}/best_accuracy"
```
### 测试端到端效果
### 模型预
测试单张图像的端到端识别效果
```shell
python3 tools/infer_e2e.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy" Global.load_static_weights=false
@ -149,8 +143,8 @@ python3 tools/infer_e2e.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.infer_img=
python3 tools/infer_e2e.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.infer_img="./doc/imgs_en/" Global.pretrained_model="./output/det_db/best_accuracy" Global.load_static_weights=false
```
###转为推理模型
### (1). 四边形文本检测模型ICDAR2015
### 预测推理
#### (1).四边形文本检测模型ICDAR2015
首先将PGNet端到端训练过程中保存的模型转换成inference model。以基于Resnet50_vd骨干网络以英文数据集训练的模型为例[模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/en_server_pgnetA.tar) ,可以使用如下命令进行转换:
```
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/en_server_pgnetA.tar && tar xf en_server_pgnetA.tar
@ -164,7 +158,7 @@ python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/im
![](../imgs_results/e2e_res_img_10_pgnet.jpg)
### (2). 弯曲文本检测模型Total-Text
#### (2).弯曲文本检测模型Total-Text
对于弯曲文本样例
**PGNet端到端模型推理需要设置参数`--e2e_algorithm="PGNet"`,同时,还需要增加参数`--e2e_pgnet_polygon=True`**可以执行如下命令: