Before Width: | Height: | Size: 12 KiB After Width: | Height: | Size: 12 KiB |
Before Width: | Height: | Size: 6.0 KiB After Width: | Height: | Size: 6.0 KiB |
Before Width: | Height: | Size: 7.8 KiB After Width: | Height: | Size: 7.8 KiB |
Before Width: | Height: | Size: 6.2 KiB After Width: | Height: | Size: 6.2 KiB |
Before Width: | Height: | Size: 18 KiB After Width: | Height: | Size: 18 KiB |
After Width: | Height: | Size: 10 KiB |
After Width: | Height: | Size: 2.1 KiB |
After Width: | Height: | Size: 1.3 KiB |
After Width: | Height: | Size: 1.2 KiB |
After Width: | Height: | Size: 1.0 KiB |
|
@ -91,14 +91,14 @@ python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_
|
|||
超轻量中文识别模型推理,可以执行如下命令:
|
||||
|
||||
```
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/word_4.jpg" --rec_model_dir="./inference/rec/"
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --rec_model_dir="./inference/rec/"
|
||||
```
|
||||
|
||||
![](imgs_words/word_4.jpg)
|
||||
![](imgs_words/ch/word_4.jpg)
|
||||
|
||||
执行命令后,上面图像的预测结果(识别的文本和得分)会打印到屏幕上,示例如下:
|
||||
|
||||
Predicts of ./doc/imgs_words/word_4.jpg:['实力活力', 0.89552695]
|
||||
Predicts of ./doc/imgs_words/ch/word_4.jpg:['实力活力', 0.89552695]
|
||||
|
||||
|
||||
### 2.基于CTC损失的识别模型推理
|
||||
|
|
|
@ -116,6 +116,7 @@ tar -xf rec_mv3_none_bilstm_ctc.tar && rm -rf rec_mv3_none_bilstm_ctc.tar
|
|||
export PYTHONPATH=$PYTHONPATH:.
|
||||
# GPU训练 支持单卡,多卡训练,通过CUDA_VISIBLE_DEVICES指定卡号
|
||||
export CUDA_VISIBLE_DEVICES=0,1,2,3
|
||||
# 训练icdar15英文数据
|
||||
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml
|
||||
```
|
||||
|
||||
|
@ -123,7 +124,7 @@ PaddleOCR支持训练和评估交替进行, 可以在 `configs/rec/rec_icdar15_t
|
|||
|
||||
如果验证集很大,测试将会比较耗时,建议减少评估次数,或训练完再进行评估。
|
||||
|
||||
* 提示: 可通过 -c 参数选择 `configs/rec/` 路径下的多种模型配置进行训练
|
||||
* 提示: 可通过 -c 参数选择 `configs/rec/` 路径下的多种模型配置进行训练,例如中文 9M 配置文件为 `rec_chinese_lite_train.yml`
|
||||
|
||||
### 评估
|
||||
|
||||
|
@ -139,21 +140,43 @@ python3 tools/eval.py -c configs/rec/rec_chinese_lite_train.yml -o Global.checkp
|
|||
|
||||
* 训练引擎的预测
|
||||
|
||||
使用 PaddleOCR 训练好的中文模型,可以通过以下脚本进行快速预测。
|
||||
使用 PaddleOCR 训练好的模型,可以通过以下脚本进行快速预测。
|
||||
|
||||
默认预测图片存储在 `infer_img` 里,通过 `-o Global.checkpoints` 指定权重:
|
||||
|
||||
```
|
||||
python3 tools/infer_rec.py -c configs/rec/rec_chinese_lite_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy TestReader.infer_img=doc/imgs_word/word_1.jpg
|
||||
# 预测英文结果
|
||||
python3 tools/infer_rec.py -c configs/rec/rec_chinese_lite_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy TestReader.infer_img=doc/imgs_word/en/word_1.jpg
|
||||
```
|
||||
|
||||
预测图片:
|
||||
|
||||
![](./imgs_words/word_1.jpg)
|
||||
![](./imgs_words/en/word_1.png)
|
||||
|
||||
得到输入图像的预测结果:
|
||||
|
||||
```
|
||||
infer_img: doc/imgs_words/word_1.jpg
|
||||
infer_img: doc/imgs_words/en/word_1.png
|
||||
index: [19 24 18 23 29]
|
||||
word : joint
|
||||
```
|
||||
|
||||
预测使用的配置文件必须与训练一致,如您通过 `python3 tools/train.py -c configs/rec/rec_chinese_lite_train.yml` 完成了中文模型的训练,
|
||||
您可以使用如下命令进行中文模型预测。
|
||||
|
||||
```
|
||||
# 预测中文结果
|
||||
python3 tools/infer_rec.py -c configs/rec/rec_chinese_lite_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy TestReader.infer_img=doc/imgs_word/ch/word_1.jpg
|
||||
```
|
||||
|
||||
预测图片:
|
||||
|
||||
![](./imgs_words/ch/word_1.jpg)
|
||||
|
||||
得到输入图像的预测结果:
|
||||
|
||||
```
|
||||
infer_img: doc/imgs_words/ch/word_1.jpg
|
||||
index: [2092 177 312 2503]
|
||||
word : 韩国小馆
|
||||
```
|
||||
|
|