commit
3ea09ad3a5
|
@ -24,11 +24,11 @@ __all__ = ['SASTProcessTrain']
|
|||
|
||||
class SASTProcessTrain(object):
|
||||
def __init__(self,
|
||||
image_shape = [512, 512],
|
||||
min_crop_size = 24,
|
||||
min_crop_side_ratio = 0.3,
|
||||
min_text_size = 10,
|
||||
max_text_size = 512,
|
||||
image_shape=[512, 512],
|
||||
min_crop_size=24,
|
||||
min_crop_side_ratio=0.3,
|
||||
min_text_size=10,
|
||||
max_text_size=512,
|
||||
**kwargs):
|
||||
self.input_size = image_shape[1]
|
||||
self.min_crop_size = min_crop_size
|
||||
|
@ -42,12 +42,10 @@ class SASTProcessTrain(object):
|
|||
:param poly:
|
||||
:return:
|
||||
"""
|
||||
edge = [
|
||||
(poly[1][0] - poly[0][0]) * (poly[1][1] + poly[0][1]),
|
||||
(poly[2][0] - poly[1][0]) * (poly[2][1] + poly[1][1]),
|
||||
(poly[3][0] - poly[2][0]) * (poly[3][1] + poly[2][1]),
|
||||
(poly[0][0] - poly[3][0]) * (poly[0][1] + poly[3][1])
|
||||
]
|
||||
edge = [(poly[1][0] - poly[0][0]) * (poly[1][1] + poly[0][1]),
|
||||
(poly[2][0] - poly[1][0]) * (poly[2][1] + poly[1][1]),
|
||||
(poly[3][0] - poly[2][0]) * (poly[3][1] + poly[2][1]),
|
||||
(poly[0][0] - poly[3][0]) * (poly[0][1] + poly[3][1])]
|
||||
return np.sum(edge) / 2.
|
||||
|
||||
def gen_quad_from_poly(self, poly):
|
||||
|
@ -57,7 +55,8 @@ class SASTProcessTrain(object):
|
|||
point_num = poly.shape[0]
|
||||
min_area_quad = np.zeros((4, 2), dtype=np.float32)
|
||||
if True:
|
||||
rect = cv2.minAreaRect(poly.astype(np.int32)) # (center (x,y), (width, height), angle of rotation)
|
||||
rect = cv2.minAreaRect(poly.astype(
|
||||
np.int32)) # (center (x,y), (width, height), angle of rotation)
|
||||
center_point = rect[0]
|
||||
box = np.array(cv2.boxPoints(rect))
|
||||
|
||||
|
@ -102,23 +101,33 @@ class SASTProcessTrain(object):
|
|||
if p_area > 0:
|
||||
if tag == False:
|
||||
print('poly in wrong direction')
|
||||
tag = True # reversed cases should be ignore
|
||||
poly = poly[(0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1), :]
|
||||
tag = True # reversed cases should be ignore
|
||||
poly = poly[(0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2,
|
||||
1), :]
|
||||
quad = quad[(0, 3, 2, 1), :]
|
||||
|
||||
len_w = np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[3] - quad[2])
|
||||
len_h = np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[1] - quad[2])
|
||||
len_w = np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[3] -
|
||||
quad[2])
|
||||
len_h = np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[1] -
|
||||
quad[2])
|
||||
hv_tag = 1
|
||||
|
||||
if len_w * 2.0 < len_h:
|
||||
|
||||
if len_w * 2.0 < len_h:
|
||||
hv_tag = 0
|
||||
|
||||
validated_polys.append(poly)
|
||||
validated_tags.append(tag)
|
||||
hv_tags.append(hv_tag)
|
||||
return np.array(validated_polys), np.array(validated_tags), np.array(hv_tags)
|
||||
return np.array(validated_polys), np.array(validated_tags), np.array(
|
||||
hv_tags)
|
||||
|
||||
def crop_area(self, im, polys, tags, hv_tags, crop_background=False, max_tries=25):
|
||||
def crop_area(self,
|
||||
im,
|
||||
polys,
|
||||
tags,
|
||||
hv_tags,
|
||||
crop_background=False,
|
||||
max_tries=25):
|
||||
"""
|
||||
make random crop from the input image
|
||||
:param im:
|
||||
|
@ -137,10 +146,10 @@ class SASTProcessTrain(object):
|
|||
poly = np.round(poly, decimals=0).astype(np.int32)
|
||||
minx = np.min(poly[:, 0])
|
||||
maxx = np.max(poly[:, 0])
|
||||
w_array[minx + pad_w: maxx + pad_w] = 1
|
||||
w_array[minx + pad_w:maxx + pad_w] = 1
|
||||
miny = np.min(poly[:, 1])
|
||||
maxy = np.max(poly[:, 1])
|
||||
h_array[miny + pad_h: maxy + pad_h] = 1
|
||||
h_array[miny + pad_h:maxy + pad_h] = 1
|
||||
# ensure the cropped area not across a text
|
||||
h_axis = np.where(h_array == 0)[0]
|
||||
w_axis = np.where(w_array == 0)[0]
|
||||
|
@ -166,17 +175,18 @@ class SASTProcessTrain(object):
|
|||
if polys.shape[0] != 0:
|
||||
poly_axis_in_area = (polys[:, :, 0] >= xmin) & (polys[:, :, 0] <= xmax) \
|
||||
& (polys[:, :, 1] >= ymin) & (polys[:, :, 1] <= ymax)
|
||||
selected_polys = np.where(np.sum(poly_axis_in_area, axis=1) == 4)[0]
|
||||
selected_polys = np.where(
|
||||
np.sum(poly_axis_in_area, axis=1) == 4)[0]
|
||||
else:
|
||||
selected_polys = []
|
||||
if len(selected_polys) == 0:
|
||||
# no text in this area
|
||||
if crop_background:
|
||||
return im[ymin : ymax + 1, xmin : xmax + 1, :], \
|
||||
polys[selected_polys], tags[selected_polys], hv_tags[selected_polys], txts
|
||||
polys[selected_polys], tags[selected_polys], hv_tags[selected_polys]
|
||||
else:
|
||||
continue
|
||||
im = im[ymin: ymax + 1, xmin: xmax + 1, :]
|
||||
im = im[ymin:ymax + 1, xmin:xmax + 1, :]
|
||||
polys = polys[selected_polys]
|
||||
tags = tags[selected_polys]
|
||||
hv_tags = hv_tags[selected_polys]
|
||||
|
@ -192,18 +202,28 @@ class SASTProcessTrain(object):
|
|||
width_list = []
|
||||
height_list = []
|
||||
for quad in poly_quads:
|
||||
quad_w = (np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[2] - quad[3])) / 2.0
|
||||
quad_h = (np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[2] - quad[1])) / 2.0
|
||||
quad_w = (np.linalg.norm(quad[0] - quad[1]) +
|
||||
np.linalg.norm(quad[2] - quad[3])) / 2.0
|
||||
quad_h = (np.linalg.norm(quad[0] - quad[3]) +
|
||||
np.linalg.norm(quad[2] - quad[1])) / 2.0
|
||||
width_list.append(quad_w)
|
||||
height_list.append(quad_h)
|
||||
norm_width = max(sum(width_list) / (len(width_list) + 1e-6), 1.0)
|
||||
norm_width = max(sum(width_list) / (len(width_list) + 1e-6), 1.0)
|
||||
average_height = max(sum(height_list) / (len(height_list) + 1e-6), 1.0)
|
||||
|
||||
for quad in poly_quads:
|
||||
direct_vector_full = ((quad[1] + quad[2]) - (quad[0] + quad[3])) / 2.0
|
||||
direct_vector = direct_vector_full / (np.linalg.norm(direct_vector_full) + 1e-6) * norm_width
|
||||
direction_label = tuple(map(float, [direct_vector[0], direct_vector[1], 1.0 / (average_height + 1e-6)]))
|
||||
cv2.fillPoly(direction_map, quad.round().astype(np.int32)[np.newaxis, :, :], direction_label)
|
||||
direct_vector_full = (
|
||||
(quad[1] + quad[2]) - (quad[0] + quad[3])) / 2.0
|
||||
direct_vector = direct_vector_full / (
|
||||
np.linalg.norm(direct_vector_full) + 1e-6) * norm_width
|
||||
direction_label = tuple(
|
||||
map(float, [
|
||||
direct_vector[0], direct_vector[1], 1.0 / (average_height +
|
||||
1e-6)
|
||||
]))
|
||||
cv2.fillPoly(direction_map,
|
||||
quad.round().astype(np.int32)[np.newaxis, :, :],
|
||||
direction_label)
|
||||
return direction_map
|
||||
|
||||
def calculate_average_height(self, poly_quads):
|
||||
|
@ -211,13 +231,19 @@ class SASTProcessTrain(object):
|
|||
"""
|
||||
height_list = []
|
||||
for quad in poly_quads:
|
||||
quad_h = (np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[2] - quad[1])) / 2.0
|
||||
quad_h = (np.linalg.norm(quad[0] - quad[3]) +
|
||||
np.linalg.norm(quad[2] - quad[1])) / 2.0
|
||||
height_list.append(quad_h)
|
||||
average_height = max(sum(height_list) / len(height_list), 1.0)
|
||||
return average_height
|
||||
|
||||
def generate_tcl_label(self, hw, polys, tags, ds_ratio,
|
||||
tcl_ratio=0.3, shrink_ratio_of_width=0.15):
|
||||
def generate_tcl_label(self,
|
||||
hw,
|
||||
polys,
|
||||
tags,
|
||||
ds_ratio,
|
||||
tcl_ratio=0.3,
|
||||
shrink_ratio_of_width=0.15):
|
||||
"""
|
||||
Generate polygon.
|
||||
"""
|
||||
|
@ -225,21 +251,30 @@ class SASTProcessTrain(object):
|
|||
h, w = int(h * ds_ratio), int(w * ds_ratio)
|
||||
polys = polys * ds_ratio
|
||||
|
||||
score_map = np.zeros((h, w,), dtype=np.float32)
|
||||
score_map = np.zeros(
|
||||
(
|
||||
h,
|
||||
w, ), dtype=np.float32)
|
||||
tbo_map = np.zeros((h, w, 5), dtype=np.float32)
|
||||
training_mask = np.ones((h, w,), dtype=np.float32)
|
||||
direction_map = np.ones((h, w, 3)) * np.array([0, 0, 1]).reshape([1, 1, 3]).astype(np.float32)
|
||||
training_mask = np.ones(
|
||||
(
|
||||
h,
|
||||
w, ), dtype=np.float32)
|
||||
direction_map = np.ones((h, w, 3)) * np.array([0, 0, 1]).reshape(
|
||||
[1, 1, 3]).astype(np.float32)
|
||||
|
||||
for poly_idx, poly_tag in enumerate(zip(polys, tags)):
|
||||
poly = poly_tag[0]
|
||||
poly = poly_tag[0]
|
||||
tag = poly_tag[1]
|
||||
|
||||
# generate min_area_quad
|
||||
min_area_quad, center_point = self.gen_min_area_quad_from_poly(poly)
|
||||
min_area_quad_h = 0.5 * (np.linalg.norm(min_area_quad[0] - min_area_quad[3]) +
|
||||
np.linalg.norm(min_area_quad[1] - min_area_quad[2]))
|
||||
min_area_quad_w = 0.5 * (np.linalg.norm(min_area_quad[0] - min_area_quad[1]) +
|
||||
np.linalg.norm(min_area_quad[2] - min_area_quad[3]))
|
||||
min_area_quad_h = 0.5 * (
|
||||
np.linalg.norm(min_area_quad[0] - min_area_quad[3]) +
|
||||
np.linalg.norm(min_area_quad[1] - min_area_quad[2]))
|
||||
min_area_quad_w = 0.5 * (
|
||||
np.linalg.norm(min_area_quad[0] - min_area_quad[1]) +
|
||||
np.linalg.norm(min_area_quad[2] - min_area_quad[3]))
|
||||
|
||||
if min(min_area_quad_h, min_area_quad_w) < self.min_text_size * ds_ratio \
|
||||
or min(min_area_quad_h, min_area_quad_w) > self.max_text_size * ds_ratio:
|
||||
|
@ -247,25 +282,37 @@ class SASTProcessTrain(object):
|
|||
|
||||
if tag:
|
||||
# continue
|
||||
cv2.fillPoly(training_mask, poly.astype(np.int32)[np.newaxis, :, :], 0.15)
|
||||
cv2.fillPoly(training_mask,
|
||||
poly.astype(np.int32)[np.newaxis, :, :], 0.15)
|
||||
else:
|
||||
tcl_poly = self.poly2tcl(poly, tcl_ratio)
|
||||
tcl_quads = self.poly2quads(tcl_poly)
|
||||
poly_quads = self.poly2quads(poly)
|
||||
# stcl map
|
||||
stcl_quads, quad_index = self.shrink_poly_along_width(tcl_quads, shrink_ratio_of_width=shrink_ratio_of_width,
|
||||
expand_height_ratio=1.0 / tcl_ratio)
|
||||
stcl_quads, quad_index = self.shrink_poly_along_width(
|
||||
tcl_quads,
|
||||
shrink_ratio_of_width=shrink_ratio_of_width,
|
||||
expand_height_ratio=1.0 / tcl_ratio)
|
||||
# generate tcl map
|
||||
cv2.fillPoly(score_map, np.round(stcl_quads).astype(np.int32), 1.0)
|
||||
cv2.fillPoly(score_map,
|
||||
np.round(stcl_quads).astype(np.int32), 1.0)
|
||||
|
||||
# generate tbo map
|
||||
for idx, quad in enumerate(stcl_quads):
|
||||
quad_mask = np.zeros((h, w), dtype=np.float32)
|
||||
quad_mask = cv2.fillPoly(quad_mask, np.round(quad[np.newaxis, :, :]).astype(np.int32), 1.0)
|
||||
tbo_map = self.gen_quad_tbo(poly_quads[quad_index[idx]], quad_mask, tbo_map)
|
||||
quad_mask = cv2.fillPoly(
|
||||
quad_mask,
|
||||
np.round(quad[np.newaxis, :, :]).astype(np.int32), 1.0)
|
||||
tbo_map = self.gen_quad_tbo(poly_quads[quad_index[idx]],
|
||||
quad_mask, tbo_map)
|
||||
return score_map, tbo_map, training_mask
|
||||
|
||||
def generate_tvo_and_tco(self, hw, polys, tags, tcl_ratio=0.3, ds_ratio=0.25):
|
||||
def generate_tvo_and_tco(self,
|
||||
hw,
|
||||
polys,
|
||||
tags,
|
||||
tcl_ratio=0.3,
|
||||
ds_ratio=0.25):
|
||||
"""
|
||||
Generate tcl map, tvo map and tbo map.
|
||||
"""
|
||||
|
@ -297,35 +344,44 @@ class SASTProcessTrain(object):
|
|||
|
||||
# generate min_area_quad
|
||||
min_area_quad, center_point = self.gen_min_area_quad_from_poly(poly)
|
||||
min_area_quad_h = 0.5 * (np.linalg.norm(min_area_quad[0] - min_area_quad[3]) +
|
||||
np.linalg.norm(min_area_quad[1] - min_area_quad[2]))
|
||||
min_area_quad_w = 0.5 * (np.linalg.norm(min_area_quad[0] - min_area_quad[1]) +
|
||||
np.linalg.norm(min_area_quad[2] - min_area_quad[3]))
|
||||
min_area_quad_h = 0.5 * (
|
||||
np.linalg.norm(min_area_quad[0] - min_area_quad[3]) +
|
||||
np.linalg.norm(min_area_quad[1] - min_area_quad[2]))
|
||||
min_area_quad_w = 0.5 * (
|
||||
np.linalg.norm(min_area_quad[0] - min_area_quad[1]) +
|
||||
np.linalg.norm(min_area_quad[2] - min_area_quad[3]))
|
||||
|
||||
# generate tcl map and text, 128 * 128
|
||||
tcl_poly = self.poly2tcl(poly, tcl_ratio)
|
||||
|
||||
# generate poly_tv_xy_map
|
||||
for idx in range(4):
|
||||
cv2.fillPoly(poly_tv_xy_map[2 * idx],
|
||||
np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
|
||||
float(min(max(min_area_quad[idx, 0], 0), w)))
|
||||
cv2.fillPoly(poly_tv_xy_map[2 * idx + 1],
|
||||
np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
|
||||
float(min(max(min_area_quad[idx, 1], 0), h)))
|
||||
cv2.fillPoly(
|
||||
poly_tv_xy_map[2 * idx],
|
||||
np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
|
||||
float(min(max(min_area_quad[idx, 0], 0), w)))
|
||||
cv2.fillPoly(
|
||||
poly_tv_xy_map[2 * idx + 1],
|
||||
np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
|
||||
float(min(max(min_area_quad[idx, 1], 0), h)))
|
||||
|
||||
# generate poly_tc_xy_map
|
||||
for idx in range(2):
|
||||
cv2.fillPoly(poly_tc_xy_map[idx],
|
||||
np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32), float(center_point[idx]))
|
||||
cv2.fillPoly(
|
||||
poly_tc_xy_map[idx],
|
||||
np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
|
||||
float(center_point[idx]))
|
||||
|
||||
# generate poly_short_edge_map
|
||||
cv2.fillPoly(poly_short_edge_map,
|
||||
np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
|
||||
float(max(min(min_area_quad_h, min_area_quad_w), 1.0)))
|
||||
cv2.fillPoly(
|
||||
poly_short_edge_map,
|
||||
np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
|
||||
float(max(min(min_area_quad_h, min_area_quad_w), 1.0)))
|
||||
|
||||
# generate poly_mask and training_mask
|
||||
cv2.fillPoly(poly_mask, np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32), 1)
|
||||
cv2.fillPoly(poly_mask,
|
||||
np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
|
||||
1)
|
||||
|
||||
tvo_map *= poly_mask
|
||||
tvo_map[:8] -= poly_tv_xy_map
|
||||
|
@ -356,7 +412,8 @@ class SASTProcessTrain(object):
|
|||
elif point_num > 4:
|
||||
vector_1 = poly[0] - poly[1]
|
||||
vector_2 = poly[1] - poly[2]
|
||||
cos_theta = np.dot(vector_1, vector_2) / (np.linalg.norm(vector_1) * np.linalg.norm(vector_2) + 1e-6)
|
||||
cos_theta = np.dot(vector_1, vector_2) / (
|
||||
np.linalg.norm(vector_1) * np.linalg.norm(vector_2) + 1e-6)
|
||||
theta = np.arccos(np.round(cos_theta, decimals=4))
|
||||
|
||||
if abs(theta) > (70 / 180 * math.pi):
|
||||
|
@ -374,7 +431,8 @@ class SASTProcessTrain(object):
|
|||
min_area_quad = poly
|
||||
center_point = np.sum(poly, axis=0) / 4
|
||||
else:
|
||||
rect = cv2.minAreaRect(poly.astype(np.int32)) # (center (x,y), (width, height), angle of rotation)
|
||||
rect = cv2.minAreaRect(poly.astype(
|
||||
np.int32)) # (center (x,y), (width, height), angle of rotation)
|
||||
center_point = rect[0]
|
||||
box = np.array(cv2.boxPoints(rect))
|
||||
|
||||
|
@ -394,16 +452,23 @@ class SASTProcessTrain(object):
|
|||
|
||||
return min_area_quad, center_point
|
||||
|
||||
def shrink_quad_along_width(self, quad, begin_width_ratio=0., end_width_ratio=1.):
|
||||
def shrink_quad_along_width(self,
|
||||
quad,
|
||||
begin_width_ratio=0.,
|
||||
end_width_ratio=1.):
|
||||
"""
|
||||
Generate shrink_quad_along_width.
|
||||
"""
|
||||
ratio_pair = np.array([[begin_width_ratio], [end_width_ratio]], dtype=np.float32)
|
||||
ratio_pair = np.array(
|
||||
[[begin_width_ratio], [end_width_ratio]], dtype=np.float32)
|
||||
p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair
|
||||
p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair
|
||||
return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]])
|
||||
|
||||
def shrink_poly_along_width(self, quads, shrink_ratio_of_width, expand_height_ratio=1.0):
|
||||
def shrink_poly_along_width(self,
|
||||
quads,
|
||||
shrink_ratio_of_width,
|
||||
expand_height_ratio=1.0):
|
||||
"""
|
||||
shrink poly with given length.
|
||||
"""
|
||||
|
@ -421,22 +486,28 @@ class SASTProcessTrain(object):
|
|||
upper_edge_list.append(upper_edge_len)
|
||||
|
||||
# length of left edge and right edge.
|
||||
left_length = np.linalg.norm(quads[0][0] - quads[0][3]) * expand_height_ratio
|
||||
right_length = np.linalg.norm(quads[-1][1] - quads[-1][2]) * expand_height_ratio
|
||||
left_length = np.linalg.norm(quads[0][0] - quads[0][
|
||||
3]) * expand_height_ratio
|
||||
right_length = np.linalg.norm(quads[-1][1] - quads[-1][
|
||||
2]) * expand_height_ratio
|
||||
|
||||
shrink_length = min(left_length, right_length, sum(upper_edge_list)) * shrink_ratio_of_width
|
||||
shrink_length = min(left_length, right_length,
|
||||
sum(upper_edge_list)) * shrink_ratio_of_width
|
||||
# shrinking length
|
||||
upper_len_left = shrink_length
|
||||
upper_len_right = sum(upper_edge_list) - shrink_length
|
||||
|
||||
left_idx, left_ratio = get_cut_info(upper_edge_list, upper_len_left)
|
||||
left_quad = self.shrink_quad_along_width(quads[left_idx], begin_width_ratio=left_ratio, end_width_ratio=1)
|
||||
left_quad = self.shrink_quad_along_width(
|
||||
quads[left_idx], begin_width_ratio=left_ratio, end_width_ratio=1)
|
||||
right_idx, right_ratio = get_cut_info(upper_edge_list, upper_len_right)
|
||||
right_quad = self.shrink_quad_along_width(quads[right_idx], begin_width_ratio=0, end_width_ratio=right_ratio)
|
||||
|
||||
right_quad = self.shrink_quad_along_width(
|
||||
quads[right_idx], begin_width_ratio=0, end_width_ratio=right_ratio)
|
||||
|
||||
out_quad_list = []
|
||||
if left_idx == right_idx:
|
||||
out_quad_list.append([left_quad[0], right_quad[1], right_quad[2], left_quad[3]])
|
||||
out_quad_list.append(
|
||||
[left_quad[0], right_quad[1], right_quad[2], left_quad[3]])
|
||||
else:
|
||||
out_quad_list.append(left_quad)
|
||||
for idx in range(left_idx + 1, right_idx):
|
||||
|
@ -500,7 +571,8 @@ class SASTProcessTrain(object):
|
|||
"""
|
||||
Generate center line by poly clock-wise point. (4, 2)
|
||||
"""
|
||||
ratio_pair = np.array([[0.5 - ratio / 2], [0.5 + ratio / 2]], dtype=np.float32)
|
||||
ratio_pair = np.array(
|
||||
[[0.5 - ratio / 2], [0.5 + ratio / 2]], dtype=np.float32)
|
||||
p0_3 = poly[0] + (poly[3] - poly[0]) * ratio_pair
|
||||
p1_2 = poly[1] + (poly[2] - poly[1]) * ratio_pair
|
||||
return np.array([p0_3[0], p1_2[0], p1_2[1], p0_3[1]])
|
||||
|
@ -509,12 +581,14 @@ class SASTProcessTrain(object):
|
|||
"""
|
||||
Generate center line by poly clock-wise point.
|
||||
"""
|
||||
ratio_pair = np.array([[0.5 - ratio / 2], [0.5 + ratio / 2]], dtype=np.float32)
|
||||
ratio_pair = np.array(
|
||||
[[0.5 - ratio / 2], [0.5 + ratio / 2]], dtype=np.float32)
|
||||
tcl_poly = np.zeros_like(poly)
|
||||
point_num = poly.shape[0]
|
||||
|
||||
for idx in range(point_num // 2):
|
||||
point_pair = poly[idx] + (poly[point_num - 1 - idx] - poly[idx]) * ratio_pair
|
||||
point_pair = poly[idx] + (poly[point_num - 1 - idx] - poly[idx]
|
||||
) * ratio_pair
|
||||
tcl_poly[idx] = point_pair[0]
|
||||
tcl_poly[point_num - 1 - idx] = point_pair[1]
|
||||
return tcl_poly
|
||||
|
@ -527,8 +601,10 @@ class SASTProcessTrain(object):
|
|||
up_line = self.line_cross_two_point(quad[0], quad[1])
|
||||
lower_line = self.line_cross_two_point(quad[3], quad[2])
|
||||
|
||||
quad_h = 0.5 * (np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[1] - quad[2]))
|
||||
quad_w = 0.5 * (np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[2] - quad[3]))
|
||||
quad_h = 0.5 * (np.linalg.norm(quad[0] - quad[3]) +
|
||||
np.linalg.norm(quad[1] - quad[2]))
|
||||
quad_w = 0.5 * (np.linalg.norm(quad[0] - quad[1]) +
|
||||
np.linalg.norm(quad[2] - quad[3]))
|
||||
|
||||
# average angle of left and right line.
|
||||
angle = self.average_angle(quad)
|
||||
|
@ -565,7 +641,8 @@ class SASTProcessTrain(object):
|
|||
quad_num = point_num // 2 - 1
|
||||
for idx in range(quad_num):
|
||||
# reshape and adjust to clock-wise
|
||||
quad_list.append((np.array(point_pair_list)[[idx, idx + 1]]).reshape(4, 2)[[0, 2, 3, 1]])
|
||||
quad_list.append((np.array(point_pair_list)[[idx, idx + 1]]
|
||||
).reshape(4, 2)[[0, 2, 3, 1]])
|
||||
|
||||
return np.array(quad_list)
|
||||
|
||||
|
@ -579,7 +656,8 @@ class SASTProcessTrain(object):
|
|||
return None
|
||||
|
||||
h, w, _ = im.shape
|
||||
text_polys, text_tags, hv_tags = self.check_and_validate_polys(text_polys, text_tags, (h, w))
|
||||
text_polys, text_tags, hv_tags = self.check_and_validate_polys(
|
||||
text_polys, text_tags, (h, w))
|
||||
|
||||
if text_polys.shape[0] == 0:
|
||||
return None
|
||||
|
@ -591,7 +669,7 @@ class SASTProcessTrain(object):
|
|||
if np.random.rand() < 0.5:
|
||||
asp_scale = 1.0 / asp_scale
|
||||
asp_scale = math.sqrt(asp_scale)
|
||||
|
||||
|
||||
asp_wx = asp_scale
|
||||
asp_hy = 1.0 / asp_scale
|
||||
im = cv2.resize(im, dsize=None, fx=asp_wx, fy=asp_hy)
|
||||
|
@ -610,7 +688,7 @@ class SASTProcessTrain(object):
|
|||
#no background
|
||||
im, text_polys, text_tags, hv_tags = self.crop_area(im, \
|
||||
text_polys, text_tags, hv_tags, crop_background=False)
|
||||
|
||||
|
||||
if text_polys.shape[0] == 0:
|
||||
return None
|
||||
#continue for all ignore case
|
||||
|
@ -621,17 +699,18 @@ class SASTProcessTrain(object):
|
|||
return None
|
||||
#resize image
|
||||
std_ratio = float(self.input_size) / max(new_w, new_h)
|
||||
rand_scales = np.array([0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0, 1.0, 1.0, 1.0, 1.0])
|
||||
rand_scales = np.array(
|
||||
[0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0, 1.0, 1.0, 1.0, 1.0])
|
||||
rz_scale = std_ratio * np.random.choice(rand_scales)
|
||||
im = cv2.resize(im, dsize=None, fx=rz_scale, fy=rz_scale)
|
||||
text_polys[:, :, 0] *= rz_scale
|
||||
text_polys[:, :, 1] *= rz_scale
|
||||
|
||||
|
||||
#add gaussian blur
|
||||
if np.random.rand() < 0.1 * 0.5:
|
||||
ks = np.random.permutation(5)[0] + 1
|
||||
ks = int(ks/2)*2 + 1
|
||||
im = cv2.GaussianBlur(im, ksize=(ks, ks), sigmaX=0, sigmaY=0)
|
||||
ks = int(ks / 2) * 2 + 1
|
||||
im = cv2.GaussianBlur(im, ksize=(ks, ks), sigmaX=0, sigmaY=0)
|
||||
#add brighter
|
||||
if np.random.rand() < 0.1 * 0.5:
|
||||
im = im * (1.0 + np.random.rand() * 0.5)
|
||||
|
@ -640,13 +719,14 @@ class SASTProcessTrain(object):
|
|||
if np.random.rand() < 0.1 * 0.5:
|
||||
im = im * (1.0 - np.random.rand() * 0.5)
|
||||
im = np.clip(im, 0.0, 255.0)
|
||||
|
||||
|
||||
# Padding the im to [input_size, input_size]
|
||||
new_h, new_w, _ = im.shape
|
||||
if min(new_w, new_h) < self.input_size * 0.5:
|
||||
return None
|
||||
|
||||
im_padded = np.ones((self.input_size, self.input_size, 3), dtype=np.float32)
|
||||
im_padded = np.ones(
|
||||
(self.input_size, self.input_size, 3), dtype=np.float32)
|
||||
im_padded[:, :, 2] = 0.485 * 255
|
||||
im_padded[:, :, 1] = 0.456 * 255
|
||||
im_padded[:, :, 0] = 0.406 * 255
|
||||
|
@ -661,24 +741,29 @@ class SASTProcessTrain(object):
|
|||
sw = int(np.random.rand() * del_w)
|
||||
|
||||
# Padding
|
||||
im_padded[sh: sh + new_h, sw: sw + new_w, :] = im.copy()
|
||||
im_padded[sh:sh + new_h, sw:sw + new_w, :] = im.copy()
|
||||
text_polys[:, :, 0] += sw
|
||||
text_polys[:, :, 1] += sh
|
||||
|
||||
score_map, border_map, training_mask = self.generate_tcl_label((self.input_size, self.input_size),
|
||||
text_polys, text_tags, 0.25)
|
||||
|
||||
score_map, border_map, training_mask = self.generate_tcl_label(
|
||||
(self.input_size, self.input_size), text_polys, text_tags, 0.25)
|
||||
|
||||
# SAST head
|
||||
tvo_map, tco_map = self.generate_tvo_and_tco((self.input_size, self.input_size), text_polys, text_tags, tcl_ratio=0.3, ds_ratio=0.25)
|
||||
tvo_map, tco_map = self.generate_tvo_and_tco(
|
||||
(self.input_size, self.input_size),
|
||||
text_polys,
|
||||
text_tags,
|
||||
tcl_ratio=0.3,
|
||||
ds_ratio=0.25)
|
||||
# print("test--------tvo_map shape:", tvo_map.shape)
|
||||
|
||||
im_padded[:, :, 2] -= 0.485 * 255
|
||||
im_padded[:, :, 1] -= 0.456 * 255
|
||||
im_padded[:, :, 0] -= 0.406 * 255
|
||||
im_padded[:, :, 2] /= (255.0 * 0.229)
|
||||
im_padded[:, :, 1] /= (255.0 * 0.224)
|
||||
im_padded[:, :, 0] /= (255.0 * 0.225)
|
||||
im_padded = im_padded.transpose((2, 0, 1))
|
||||
im_padded[:, :, 2] /= (255.0 * 0.229)
|
||||
im_padded[:, :, 1] /= (255.0 * 0.224)
|
||||
im_padded[:, :, 0] /= (255.0 * 0.225)
|
||||
im_padded = im_padded.transpose((2, 0, 1))
|
||||
|
||||
data['image'] = im_padded[::-1, :, :]
|
||||
data['score_map'] = score_map[np.newaxis, :, :]
|
||||
|
@ -686,4 +771,4 @@ class SASTProcessTrain(object):
|
|||
data['training_mask'] = training_mask[np.newaxis, :, :]
|
||||
data['tvo_map'] = tvo_map.transpose((2, 0, 1))
|
||||
data['tco_map'] = tco_map.transpose((2, 0, 1))
|
||||
return data
|
||||
return data
|
||||
|
|
Loading…
Reference in New Issue