update inference for east & sast
This commit is contained in:
parent
1f926f5f01
commit
3f64d27b71
|
@ -173,7 +173,7 @@ python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_
|
|||
<a name="EAST文本检测模型推理"></a>
|
||||
### 3. EAST文本检测模型推理
|
||||
|
||||
首先将EAST文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例( [模型下载地址 (coming soon)](link) ),可以使用如下命令进行转换:
|
||||
首先将EAST文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar) ),可以使用如下命令进行转换:
|
||||
|
||||
```
|
||||
python3 tools/export_model.py -c configs/det/det_r50_vd_east.yml -o Global.pretrained_model=./det_r50_vd_east_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_east
|
||||
|
@ -186,7 +186,7 @@ python3 tools/infer/predict_det.py --det_algorithm="EAST" --image_dir="./doc/img
|
|||
```
|
||||
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
|
||||
|
||||
(coming soon)
|
||||
![](../imgs_results/det_res_img_10_east.jpg)
|
||||
|
||||
**注意**:本代码库中,EAST后处理Locality-Aware NMS有python和c++两种版本,c++版速度明显快于python版。由于c++版本nms编译版本问题,只有python3.5环境下会调用c++版nms,其他情况将调用python版nms。
|
||||
|
||||
|
@ -194,7 +194,7 @@ python3 tools/infer/predict_det.py --det_algorithm="EAST" --image_dir="./doc/img
|
|||
<a name="SAST文本检测模型推理"></a>
|
||||
### 4. SAST文本检测模型推理
|
||||
#### (1). 四边形文本检测模型(ICDAR2015)
|
||||
首先将SAST文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例([模型下载地址(coming soon)](link)),可以使用如下命令进行转换:
|
||||
首先将SAST文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)),可以使用如下命令进行转换:
|
||||
```
|
||||
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_icdar15.yml -o Global.pretrained_model=./det_r50_vd_sast_icdar15_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_ic15
|
||||
|
||||
|
@ -205,10 +205,10 @@ python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/img
|
|||
```
|
||||
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
|
||||
|
||||
(coming soon)
|
||||
![](../imgs_results/det_res_img_10_sast.jpg)
|
||||
|
||||
#### (2). 弯曲文本检测模型(Total-Text)
|
||||
首先将SAST文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在Total-Text英文数据集训练的模型为例([模型下载地址(coming soon)](link)),可以使用如下命令进行转换:
|
||||
首先将SAST文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在Total-Text英文数据集训练的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)),可以使用如下命令进行转换:
|
||||
|
||||
```
|
||||
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_totaltext.yml -o Global.pretrained_model=./det_r50_vd_sast_totaltext_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_tt
|
||||
|
@ -221,7 +221,7 @@ python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/img
|
|||
```
|
||||
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
|
||||
|
||||
(coming soon)
|
||||
![](../imgs_results/det_res_img623_sast.jpg)
|
||||
|
||||
**注意**:本代码库中,SAST后处理Locality-Aware NMS有python和c++两种版本,c++版速度明显快于python版。由于c++版本nms编译版本问题,只有python3.5环境下会调用c++版nms,其他情况将调用python版nms。
|
||||
|
||||
|
|
|
@ -179,7 +179,7 @@ The visualized text detection results are saved to the `./inference_results` fol
|
|||
<a name="EAST_DETECTION"></a>
|
||||
### 3. EAST TEXT DETECTION MODEL INFERENCE
|
||||
|
||||
First, convert the model saved in the EAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link (coming soon)](link)), you can use the following command to convert:
|
||||
First, convert the model saved in the EAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar)), you can use the following command to convert:
|
||||
|
||||
```
|
||||
python3 tools/export_model.py -c configs/det/det_r50_vd_east.yml -o Global.pretrained_model=./det_r50_vd_east_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_east
|
||||
|
@ -192,7 +192,7 @@ python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_
|
|||
|
||||
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:
|
||||
|
||||
(coming soon)
|
||||
![](../imgs_results/det_res_img_10_east.jpg)
|
||||
|
||||
**Note**: EAST post-processing locality aware NMS has two versions: Python and C++. The speed of C++ version is obviously faster than that of Python version. Due to the compilation version problem of NMS of C++ version, C++ version NMS will be called only in Python 3.5 environment, and python version NMS will be called in other cases.
|
||||
|
||||
|
@ -200,7 +200,7 @@ The visualized text detection results are saved to the `./inference_results` fol
|
|||
<a name="SAST_DETECTION"></a>
|
||||
### 4. SAST TEXT DETECTION MODEL INFERENCE
|
||||
#### (1). Quadrangle text detection model (ICDAR2015)
|
||||
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link (coming soon)](link)), you can use the following command to convert:
|
||||
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)), you can use the following command to convert:
|
||||
|
||||
```
|
||||
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_icdar15.yml -o Global.pretrained_model=./det_r50_vd_sast_icdar15_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_ic15
|
||||
|
@ -214,10 +214,10 @@ python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/img
|
|||
|
||||
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:
|
||||
|
||||
(coming soon)
|
||||
![](../imgs_results/det_res_img_10_sast.jpg)
|
||||
|
||||
#### (2). Curved text detection model (Total-Text)
|
||||
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the Total-Text English dataset as an example ([model download link (coming soon)](https://paddleocr.bj.bcebos.com/SAST/sast_r50_vd_total_text.tar)), you can use the following command to convert:
|
||||
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the Total-Text English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)), you can use the following command to convert:
|
||||
|
||||
```
|
||||
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_totaltext.yml -o Global.pretrained_model=./det_r50_vd_sast_totaltext_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_tt
|
||||
|
@ -231,7 +231,7 @@ python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/img
|
|||
|
||||
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:
|
||||
|
||||
(coming soon)
|
||||
![](../imgs_results/det_res_img623_sast.jpg)
|
||||
|
||||
**Note**: SAST post-processing locality aware NMS has two versions: Python and C++. The speed of C++ version is obviously faster than that of Python version. Due to the compilation version problem of NMS of C++ version, C++ version NMS will be called only in Python 3.5 environment, and python version NMS will be called in other cases.
|
||||
|
||||
|
|
Binary file not shown.
Before Width: | Height: | Size: 126 KiB After Width: | Height: | Size: 125 KiB |
Binary file not shown.
Before Width: | Height: | Size: 331 KiB After Width: | Height: | Size: 332 KiB |
Binary file not shown.
Before Width: | Height: | Size: 333 KiB After Width: | Height: | Size: 332 KiB |
|
@ -132,7 +132,8 @@ class DBPostProcess(object):
|
|||
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
|
||||
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
|
||||
|
||||
def __call__(self, pred, shape_list):
|
||||
def __call__(self, outs_dict, shape_list):
|
||||
pred = outs_dict['maps']
|
||||
if isinstance(pred, paddle.Tensor):
|
||||
pred = pred.numpy()
|
||||
pred = pred[:, 0, :, :]
|
||||
|
|
|
@ -19,12 +19,10 @@ from __future__ import print_function
|
|||
import numpy as np
|
||||
from .locality_aware_nms import nms_locality
|
||||
import cv2
|
||||
import paddle
|
||||
|
||||
import os
|
||||
import sys
|
||||
# __dir__ = os.path.dirname(os.path.abspath(__file__))
|
||||
# sys.path.append(__dir__)
|
||||
# sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
|
||||
|
||||
|
||||
class EASTPostProcess(object):
|
||||
|
@ -113,11 +111,14 @@ class EASTPostProcess(object):
|
|||
def __call__(self, outs_dict, shape_list):
|
||||
score_list = outs_dict['f_score']
|
||||
geo_list = outs_dict['f_geo']
|
||||
if isinstance(score_list, paddle.Tensor):
|
||||
score_list = score_list.numpy()
|
||||
geo_list = geo_list.numpy()
|
||||
img_num = len(shape_list)
|
||||
dt_boxes_list = []
|
||||
for ino in range(img_num):
|
||||
score = score_list[ino].numpy()
|
||||
geo = geo_list[ino].numpy()
|
||||
score = score_list[ino]
|
||||
geo = geo_list[ino]
|
||||
boxes = self.detect(
|
||||
score_map=score,
|
||||
geo_map=geo,
|
||||
|
|
|
@ -24,7 +24,7 @@ sys.path.append(os.path.join(__dir__, '..'))
|
|||
|
||||
import numpy as np
|
||||
from .locality_aware_nms import nms_locality
|
||||
# import lanms
|
||||
import paddle
|
||||
import cv2
|
||||
import time
|
||||
|
||||
|
@ -276,14 +276,19 @@ class SASTPostProcess(object):
|
|||
border_list = outs_dict['f_border']
|
||||
tvo_list = outs_dict['f_tvo']
|
||||
tco_list = outs_dict['f_tco']
|
||||
if isinstance(score_list, paddle.Tensor):
|
||||
score_list = score_list.numpy()
|
||||
border_list = border_list.numpy()
|
||||
tvo_list = tvo_list.numpy()
|
||||
tco_list = tco_list.numpy()
|
||||
|
||||
img_num = len(shape_list)
|
||||
poly_lists = []
|
||||
for ino in range(img_num):
|
||||
p_score = score_list[ino].transpose((1,2,0)).numpy()
|
||||
p_border = border_list[ino].transpose((1,2,0)).numpy()
|
||||
p_tvo = tvo_list[ino].transpose((1,2,0)).numpy()
|
||||
p_tco = tco_list[ino].transpose((1,2,0)).numpy()
|
||||
p_score = score_list[ino].transpose((1,2,0))
|
||||
p_border = border_list[ino].transpose((1,2,0))
|
||||
p_tvo = tvo_list[ino].transpose((1,2,0))
|
||||
p_tco = tco_list[ino].transpose((1,2,0))
|
||||
src_h, src_w, ratio_h, ratio_w = shape_list[ino]
|
||||
|
||||
poly_list = self.detect_sast(p_score, p_tvo, p_border, p_tco, ratio_w, ratio_h, src_w, src_h,
|
||||
|
|
|
@ -37,33 +37,51 @@ class TextDetector(object):
|
|||
def __init__(self, args):
|
||||
self.det_algorithm = args.det_algorithm
|
||||
self.use_zero_copy_run = args.use_zero_copy_run
|
||||
pre_process_list = [{
|
||||
'DetResizeForTest': {
|
||||
'limit_side_len': args.det_limit_side_len,
|
||||
'limit_type': args.det_limit_type
|
||||
}
|
||||
}, {
|
||||
'NormalizeImage': {
|
||||
'std': [0.229, 0.224, 0.225],
|
||||
'mean': [0.485, 0.456, 0.406],
|
||||
'scale': '1./255.',
|
||||
'order': 'hwc'
|
||||
}
|
||||
}, {
|
||||
'ToCHWImage': None
|
||||
}, {
|
||||
'KeepKeys': {
|
||||
'keep_keys': ['image', 'shape']
|
||||
}
|
||||
}]
|
||||
postprocess_params = {}
|
||||
if self.det_algorithm == "DB":
|
||||
pre_process_list = [{
|
||||
'DetResizeForTest': {
|
||||
'limit_side_len': args.det_limit_side_len,
|
||||
'limit_type': args.det_limit_type
|
||||
}
|
||||
}, {
|
||||
'NormalizeImage': {
|
||||
'std': [0.229, 0.224, 0.225],
|
||||
'mean': [0.485, 0.456, 0.406],
|
||||
'scale': '1./255.',
|
||||
'order': 'hwc'
|
||||
}
|
||||
}, {
|
||||
'ToCHWImage': None
|
||||
}, {
|
||||
'KeepKeys': {
|
||||
'keep_keys': ['image', 'shape']
|
||||
}
|
||||
}]
|
||||
postprocess_params['name'] = 'DBPostProcess'
|
||||
postprocess_params["thresh"] = args.det_db_thresh
|
||||
postprocess_params["box_thresh"] = args.det_db_box_thresh
|
||||
postprocess_params["max_candidates"] = 1000
|
||||
postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
|
||||
postprocess_params["use_dilation"] = True
|
||||
elif self.det_algorithm == "EAST":
|
||||
postprocess_params['name'] = 'EASTPostProcess'
|
||||
postprocess_params["score_thresh"] = args.det_east_score_thresh
|
||||
postprocess_params["cover_thresh"] = args.det_east_cover_thresh
|
||||
postprocess_params["nms_thresh"] = args.det_east_nms_thresh
|
||||
elif self.det_algorithm == "SAST":
|
||||
postprocess_params['name'] = 'SASTPostProcess'
|
||||
postprocess_params["score_thresh"] = args.det_sast_score_thresh
|
||||
postprocess_params["nms_thresh"] = args.det_sast_nms_thresh
|
||||
self.det_sast_polygon = args.det_sast_polygon
|
||||
if self.det_sast_polygon:
|
||||
postprocess_params["sample_pts_num"] = 6
|
||||
postprocess_params["expand_scale"] = 1.2
|
||||
postprocess_params["shrink_ratio_of_width"] = 0.2
|
||||
else:
|
||||
postprocess_params["sample_pts_num"] = 2
|
||||
postprocess_params["expand_scale"] = 1.0
|
||||
postprocess_params["shrink_ratio_of_width"] = 0.3
|
||||
else:
|
||||
logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
|
||||
sys.exit(0)
|
||||
|
@ -149,12 +167,25 @@ class TextDetector(object):
|
|||
for output_tensor in self.output_tensors:
|
||||
output = output_tensor.copy_to_cpu()
|
||||
outputs.append(output)
|
||||
preds = outputs[0]
|
||||
|
||||
# preds = self.predictor(img)
|
||||
preds = {}
|
||||
if self.det_algorithm == "EAST":
|
||||
preds['f_geo'] = outputs[0]
|
||||
preds['f_score'] = outputs[1]
|
||||
elif self.det_algorithm == 'SAST':
|
||||
preds['f_border'] = outputs[0]
|
||||
preds['f_score'] = outputs[1]
|
||||
preds['f_tco'] = outputs[2]
|
||||
preds['f_tvo'] = outputs[3]
|
||||
else:
|
||||
preds['maps'] = outputs[0]
|
||||
|
||||
post_result = self.postprocess_op(preds, shape_list)
|
||||
dt_boxes = post_result[0]['points']
|
||||
dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
|
||||
if self.det_algorithm == "SAST" and self.det_sast_polygon:
|
||||
dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape)
|
||||
else:
|
||||
dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
|
||||
elapse = time.time() - starttime
|
||||
return dt_boxes, elapse
|
||||
|
||||
|
|
Loading…
Reference in New Issue