add DistillationDilaDBLoss loss
This commit is contained in:
parent
a411c825e2
commit
40bf3b1053
|
@ -34,7 +34,8 @@ def _sum_loss(loss_dict):
|
||||||
loss_dict["loss"] += value
|
loss_dict["loss"] += value
|
||||||
return loss_dict
|
return loss_dict
|
||||||
|
|
||||||
# class DistillationDMLLoss(DMLLoss):
|
|
||||||
|
class DistillationDMLLoss(DMLLoss):
|
||||||
"""
|
"""
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
@ -131,93 +132,6 @@ class DistillationCTCLoss(CTCLoss):
|
||||||
return loss_dict
|
return loss_dict
|
||||||
|
|
||||||
|
|
||||||
"""
|
|
||||||
class DistillationDBLoss(DBLoss):
|
|
||||||
def __init__(self,
|
|
||||||
model_name_list=[],
|
|
||||||
balance_loss=True,
|
|
||||||
main_loss_type='DiceLoss',
|
|
||||||
alpha=5,
|
|
||||||
beta=10,
|
|
||||||
ohem_ratio=3,
|
|
||||||
eps=1e-6,
|
|
||||||
name="db_loss",
|
|
||||||
**kwargs):
|
|
||||||
super().__init__()
|
|
||||||
self.model_name_list = model_name_list
|
|
||||||
self.name = name
|
|
||||||
|
|
||||||
def forward(self, predicts, batch):
|
|
||||||
loss_dict = dict()
|
|
||||||
for idx, model_name in enumerate(self.model_name_list):
|
|
||||||
out = predicts[model_name]
|
|
||||||
if self.key is not None:
|
|
||||||
out = out[self.key]
|
|
||||||
|
|
||||||
loss = super().forward(out, batch)
|
|
||||||
|
|
||||||
if isinstance(loss, dict):
|
|
||||||
for key in loss.keys():
|
|
||||||
if key == "loss":
|
|
||||||
continue
|
|
||||||
loss_dict[f"{self.name}_{model_name}_{key}"] = loss[key]
|
|
||||||
else:
|
|
||||||
loss_dict[f"{self.name}_{model_name}"] = loss
|
|
||||||
|
|
||||||
loss_dict = _sum_loss(loss_dict)
|
|
||||||
return loss_dict
|
|
||||||
|
|
||||||
|
|
||||||
class DistillationDilaDBLoss(DBLoss):
|
|
||||||
def __init__(self, model_name_pairs=[],
|
|
||||||
balance_loss=True,
|
|
||||||
main_loss_type='DiceLoss',
|
|
||||||
alpha=5,
|
|
||||||
beta=10,
|
|
||||||
ohem_ratio=3,
|
|
||||||
eps=1e-6,
|
|
||||||
name="dila_dbloss"):
|
|
||||||
super().__init__()
|
|
||||||
self.model_name_pairs = model_name_pairs
|
|
||||||
self.name = name
|
|
||||||
|
|
||||||
def forward(self, predicts, batch):
|
|
||||||
loss_dict = dict()
|
|
||||||
for idx, pair in enumerate(self.model_name_pairs):
|
|
||||||
stu_outs = predicts[pair[0]]
|
|
||||||
tch_outs = predicts[pair[1]]
|
|
||||||
if self.key is not None:
|
|
||||||
stu_preds = stu_outs[self.key]
|
|
||||||
tch_preds = tch_outs[self.key]
|
|
||||||
|
|
||||||
stu_shrink_maps = stu_preds[:, 0, :, :]
|
|
||||||
stu_binary_maps = stu_preds[:, 2, :, :]
|
|
||||||
|
|
||||||
# dilation to teacher prediction
|
|
||||||
dilation_w = np.array([[1,1], [1,1]])
|
|
||||||
th_shrink_maps = tch_preds[:, 0, :, :]
|
|
||||||
th_shrink_maps = th_shrink_maps.numpy() > 0.3 # thresh = 0.3
|
|
||||||
dilate_maps = np.zeros_like(th_shrink_maps).astype(np.float32)
|
|
||||||
for i in range(th_shrink_maps.shape[0]):
|
|
||||||
dilate_maps[i] = cv2.dilate(th_shrink_maps[i, :, :].astype(np.uint8), dilation_w)
|
|
||||||
th_shrink_maps = paddle.to_tensor(dilate_maps)
|
|
||||||
|
|
||||||
label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = batch[1:]
|
|
||||||
|
|
||||||
# calculate the shrink map loss
|
|
||||||
bce_loss = self.alpha * self.bce_loss(stu_shrink_maps, th_shrink_maps,
|
|
||||||
label_shrink_mask)
|
|
||||||
loss_binary_maps = self.dice_loss(stu_binary_maps, th_shrink_maps,
|
|
||||||
label_shrink_mask)
|
|
||||||
|
|
||||||
k = f"{self.name}_{pair[0]}_{pair[1]}"
|
|
||||||
loss_dict[k] = bce_loss + loss_binary_maps
|
|
||||||
|
|
||||||
loss_dict = _sum_loss(loss_dict)
|
|
||||||
return loss
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
class DistillationDistanceLoss(DistanceLoss):
|
class DistillationDistanceLoss(DistanceLoss):
|
||||||
"""
|
"""
|
||||||
"""
|
"""
|
||||||
|
|
Loading…
Reference in New Issue