add DistillationDilaDBLoss loss
This commit is contained in:
parent
a411c825e2
commit
40bf3b1053
|
@ -34,7 +34,8 @@ def _sum_loss(loss_dict):
|
|||
loss_dict["loss"] += value
|
||||
return loss_dict
|
||||
|
||||
# class DistillationDMLLoss(DMLLoss):
|
||||
|
||||
class DistillationDMLLoss(DMLLoss):
|
||||
"""
|
||||
"""
|
||||
|
||||
|
@ -131,93 +132,6 @@ class DistillationCTCLoss(CTCLoss):
|
|||
return loss_dict
|
||||
|
||||
|
||||
"""
|
||||
class DistillationDBLoss(DBLoss):
|
||||
def __init__(self,
|
||||
model_name_list=[],
|
||||
balance_loss=True,
|
||||
main_loss_type='DiceLoss',
|
||||
alpha=5,
|
||||
beta=10,
|
||||
ohem_ratio=3,
|
||||
eps=1e-6,
|
||||
name="db_loss",
|
||||
**kwargs):
|
||||
super().__init__()
|
||||
self.model_name_list = model_name_list
|
||||
self.name = name
|
||||
|
||||
def forward(self, predicts, batch):
|
||||
loss_dict = dict()
|
||||
for idx, model_name in enumerate(self.model_name_list):
|
||||
out = predicts[model_name]
|
||||
if self.key is not None:
|
||||
out = out[self.key]
|
||||
|
||||
loss = super().forward(out, batch)
|
||||
|
||||
if isinstance(loss, dict):
|
||||
for key in loss.keys():
|
||||
if key == "loss":
|
||||
continue
|
||||
loss_dict[f"{self.name}_{model_name}_{key}"] = loss[key]
|
||||
else:
|
||||
loss_dict[f"{self.name}_{model_name}"] = loss
|
||||
|
||||
loss_dict = _sum_loss(loss_dict)
|
||||
return loss_dict
|
||||
|
||||
|
||||
class DistillationDilaDBLoss(DBLoss):
|
||||
def __init__(self, model_name_pairs=[],
|
||||
balance_loss=True,
|
||||
main_loss_type='DiceLoss',
|
||||
alpha=5,
|
||||
beta=10,
|
||||
ohem_ratio=3,
|
||||
eps=1e-6,
|
||||
name="dila_dbloss"):
|
||||
super().__init__()
|
||||
self.model_name_pairs = model_name_pairs
|
||||
self.name = name
|
||||
|
||||
def forward(self, predicts, batch):
|
||||
loss_dict = dict()
|
||||
for idx, pair in enumerate(self.model_name_pairs):
|
||||
stu_outs = predicts[pair[0]]
|
||||
tch_outs = predicts[pair[1]]
|
||||
if self.key is not None:
|
||||
stu_preds = stu_outs[self.key]
|
||||
tch_preds = tch_outs[self.key]
|
||||
|
||||
stu_shrink_maps = stu_preds[:, 0, :, :]
|
||||
stu_binary_maps = stu_preds[:, 2, :, :]
|
||||
|
||||
# dilation to teacher prediction
|
||||
dilation_w = np.array([[1,1], [1,1]])
|
||||
th_shrink_maps = tch_preds[:, 0, :, :]
|
||||
th_shrink_maps = th_shrink_maps.numpy() > 0.3 # thresh = 0.3
|
||||
dilate_maps = np.zeros_like(th_shrink_maps).astype(np.float32)
|
||||
for i in range(th_shrink_maps.shape[0]):
|
||||
dilate_maps[i] = cv2.dilate(th_shrink_maps[i, :, :].astype(np.uint8), dilation_w)
|
||||
th_shrink_maps = paddle.to_tensor(dilate_maps)
|
||||
|
||||
label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = batch[1:]
|
||||
|
||||
# calculate the shrink map loss
|
||||
bce_loss = self.alpha * self.bce_loss(stu_shrink_maps, th_shrink_maps,
|
||||
label_shrink_mask)
|
||||
loss_binary_maps = self.dice_loss(stu_binary_maps, th_shrink_maps,
|
||||
label_shrink_mask)
|
||||
|
||||
k = f"{self.name}_{pair[0]}_{pair[1]}"
|
||||
loss_dict[k] = bce_loss + loss_binary_maps
|
||||
|
||||
loss_dict = _sum_loss(loss_dict)
|
||||
return loss
|
||||
"""
|
||||
|
||||
|
||||
class DistillationDistanceLoss(DistanceLoss):
|
||||
"""
|
||||
"""
|
||||
|
|
Loading…
Reference in New Issue