diff --git a/tests/ocr_det_params.txt b/tests/ocr_det_params.txt index 4fc6626c..31928cef 100644 --- a/tests/ocr_det_params.txt +++ b/tests/ocr_det_params.txt @@ -2,11 +2,11 @@ model_name:ocr_det python:python3.7 gpu_list:0|0,1 +Global.use_gpu:True|False Global.auto_cast:null Global.epoch_num:2 Global.save_model_dir:./output/ Train.loader.batch_size_per_card:2 -Global.use_gpu: Global.pretrained_model:null train_model_name:latest train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/ diff --git a/tests/test.sh b/tests/test.sh index 10c26d2c..60b0233c 100644 --- a/tests/test.sh +++ b/tests/test.sh @@ -50,14 +50,15 @@ IFS=$'\n' model_name=$(func_parser_value "${lines[1]}") python=$(func_parser_value "${lines[2]}") gpu_list=$(func_parser_value "${lines[3]}") -autocast_list=$(func_parser_value "${lines[4]}") -autocast_key=$(func_parser_key "${lines[4]}") -epoch_key=$(func_parser_key "${lines[5]}") -epoch_num=$(func_parser_value "${lines[5]}") -save_model_key=$(func_parser_key "${lines[6]}") -train_batch_key=$(func_parser_key "${lines[7]}") -train_batch_value=$(func_parser_value "${lines[7]}") -train_use_gpu_key=$(func_parser_key "${lines[8]}") +train_use_gpu_key=$(func_parser_key "${lines[4]}") +train_use_gpu_value=$(func_parser_value "${lines[4]}") +autocast_list=$(func_parser_value "${lines[5]}") +autocast_key=$(func_parser_key "${lines[5]}") +epoch_key=$(func_parser_key "${lines[6]}") +epoch_num=$(func_parser_value "${lines[6]}") +save_model_key=$(func_parser_key "${lines[7]}") +train_batch_key=$(func_parser_key "${lines[8]}") +train_batch_value=$(func_parser_value "${lines[8]}") pretrain_model_key=$(func_parser_key "${lines[9]}") pretrain_model_value=$(func_parser_value "${lines[9]}") train_model_name=$(func_parser_value "${lines[10]}") @@ -132,7 +133,7 @@ function func_inference(){ _flag_quant=$6 # inference for use_gpu in ${use_gpu_list[*]}; do - if [ ${use_gpu} = "False" ]; then + if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then for use_mkldnn in ${use_mkldnn_list[*]}; do if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then continue @@ -149,7 +150,7 @@ function func_inference(){ done done done - else + elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then for use_trt in ${use_trt_list[*]}; do for precision in ${precision_list[*]}; do if [ ${use_trt} = "False" ] && [ ${precision} != "fp32" ]; then @@ -171,6 +172,8 @@ function func_inference(){ done done done + else + echo "Currently does not support hardware other than CPU and GPU" fi done } @@ -178,10 +181,12 @@ function func_inference(){ if [ ${MODE} != "infer" ]; then IFS="|" +export Count=0 +USE_GPU_KEY=(${train_use_gpu_value}) for gpu in ${gpu_list[*]}; do - use_gpu=True + use_gpu=${USE_GPU_KEY[Count]} + Count=$(($Count + 1)) if [ ${gpu} = "-1" ];then - use_gpu=False env="" elif [ ${#gpu} -le 1 ];then env="export CUDA_VISIBLE_DEVICES=${gpu}" @@ -232,10 +237,11 @@ for gpu in ${gpu_list[*]}; do set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}") set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}") set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}") + set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}") save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}" if [ ${#gpu} -le 2 ];then # train with cpu or single gpu - cmd="${python} ${run_train} ${train_use_gpu_key}=${use_gpu} ${save_model_key}=${save_log} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} " + cmd="${python} ${run_train} ${set_use_gpu} ${save_model_key}=${save_log} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} " elif [ ${#gpu} -le 15 ];then # train with multi-gpu cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${save_model_key}=${save_log} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}" else # train with multi-machine @@ -247,7 +253,7 @@ for gpu in ${gpu_list[*]}; do # run eval if [ ${eval_py} != "null" ]; then - eval_cmd="${python} ${eval_py} ${save_model_key}=${save_log} ${pretrain_model_key}=${save_log}/${train_model_name}" + eval_cmd="${python} ${eval_py} ${save_model_key}=${save_log} ${pretrain_model_key}=${save_log}/${train_model_name} ${set_use_gpu}" eval $eval_cmd status_check $? "${eval_cmd}" "${status_log}" fi