support use_gpu as device
This commit is contained in:
parent
2be96bfc9a
commit
425e343b05
|
@ -2,11 +2,11 @@
|
||||||
model_name:ocr_det
|
model_name:ocr_det
|
||||||
python:python3.7
|
python:python3.7
|
||||||
gpu_list:0|0,1
|
gpu_list:0|0,1
|
||||||
|
Global.use_gpu:True|False
|
||||||
Global.auto_cast:null
|
Global.auto_cast:null
|
||||||
Global.epoch_num:2
|
Global.epoch_num:2
|
||||||
Global.save_model_dir:./output/
|
Global.save_model_dir:./output/
|
||||||
Train.loader.batch_size_per_card:2
|
Train.loader.batch_size_per_card:2
|
||||||
Global.use_gpu:
|
|
||||||
Global.pretrained_model:null
|
Global.pretrained_model:null
|
||||||
train_model_name:latest
|
train_model_name:latest
|
||||||
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
|
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
|
||||||
|
|
|
@ -50,14 +50,15 @@ IFS=$'\n'
|
||||||
model_name=$(func_parser_value "${lines[1]}")
|
model_name=$(func_parser_value "${lines[1]}")
|
||||||
python=$(func_parser_value "${lines[2]}")
|
python=$(func_parser_value "${lines[2]}")
|
||||||
gpu_list=$(func_parser_value "${lines[3]}")
|
gpu_list=$(func_parser_value "${lines[3]}")
|
||||||
autocast_list=$(func_parser_value "${lines[4]}")
|
train_use_gpu_key=$(func_parser_key "${lines[4]}")
|
||||||
autocast_key=$(func_parser_key "${lines[4]}")
|
train_use_gpu_value=$(func_parser_value "${lines[4]}")
|
||||||
epoch_key=$(func_parser_key "${lines[5]}")
|
autocast_list=$(func_parser_value "${lines[5]}")
|
||||||
epoch_num=$(func_parser_value "${lines[5]}")
|
autocast_key=$(func_parser_key "${lines[5]}")
|
||||||
save_model_key=$(func_parser_key "${lines[6]}")
|
epoch_key=$(func_parser_key "${lines[6]}")
|
||||||
train_batch_key=$(func_parser_key "${lines[7]}")
|
epoch_num=$(func_parser_value "${lines[6]}")
|
||||||
train_batch_value=$(func_parser_value "${lines[7]}")
|
save_model_key=$(func_parser_key "${lines[7]}")
|
||||||
train_use_gpu_key=$(func_parser_key "${lines[8]}")
|
train_batch_key=$(func_parser_key "${lines[8]}")
|
||||||
|
train_batch_value=$(func_parser_value "${lines[8]}")
|
||||||
pretrain_model_key=$(func_parser_key "${lines[9]}")
|
pretrain_model_key=$(func_parser_key "${lines[9]}")
|
||||||
pretrain_model_value=$(func_parser_value "${lines[9]}")
|
pretrain_model_value=$(func_parser_value "${lines[9]}")
|
||||||
train_model_name=$(func_parser_value "${lines[10]}")
|
train_model_name=$(func_parser_value "${lines[10]}")
|
||||||
|
@ -132,7 +133,7 @@ function func_inference(){
|
||||||
_flag_quant=$6
|
_flag_quant=$6
|
||||||
# inference
|
# inference
|
||||||
for use_gpu in ${use_gpu_list[*]}; do
|
for use_gpu in ${use_gpu_list[*]}; do
|
||||||
if [ ${use_gpu} = "False" ]; then
|
if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
|
||||||
for use_mkldnn in ${use_mkldnn_list[*]}; do
|
for use_mkldnn in ${use_mkldnn_list[*]}; do
|
||||||
if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
|
if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
|
||||||
continue
|
continue
|
||||||
|
@ -149,7 +150,7 @@ function func_inference(){
|
||||||
done
|
done
|
||||||
done
|
done
|
||||||
done
|
done
|
||||||
else
|
elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
|
||||||
for use_trt in ${use_trt_list[*]}; do
|
for use_trt in ${use_trt_list[*]}; do
|
||||||
for precision in ${precision_list[*]}; do
|
for precision in ${precision_list[*]}; do
|
||||||
if [ ${use_trt} = "False" ] && [ ${precision} != "fp32" ]; then
|
if [ ${use_trt} = "False" ] && [ ${precision} != "fp32" ]; then
|
||||||
|
@ -171,6 +172,8 @@ function func_inference(){
|
||||||
done
|
done
|
||||||
done
|
done
|
||||||
done
|
done
|
||||||
|
else
|
||||||
|
echo "Currently does not support hardware other than CPU and GPU"
|
||||||
fi
|
fi
|
||||||
done
|
done
|
||||||
}
|
}
|
||||||
|
@ -178,10 +181,12 @@ function func_inference(){
|
||||||
if [ ${MODE} != "infer" ]; then
|
if [ ${MODE} != "infer" ]; then
|
||||||
|
|
||||||
IFS="|"
|
IFS="|"
|
||||||
|
export Count=0
|
||||||
|
USE_GPU_KEY=(${train_use_gpu_value})
|
||||||
for gpu in ${gpu_list[*]}; do
|
for gpu in ${gpu_list[*]}; do
|
||||||
use_gpu=True
|
use_gpu=${USE_GPU_KEY[Count]}
|
||||||
|
Count=$(($Count + 1))
|
||||||
if [ ${gpu} = "-1" ];then
|
if [ ${gpu} = "-1" ];then
|
||||||
use_gpu=False
|
|
||||||
env=""
|
env=""
|
||||||
elif [ ${#gpu} -le 1 ];then
|
elif [ ${#gpu} -le 1 ];then
|
||||||
env="export CUDA_VISIBLE_DEVICES=${gpu}"
|
env="export CUDA_VISIBLE_DEVICES=${gpu}"
|
||||||
|
@ -232,10 +237,11 @@ for gpu in ${gpu_list[*]}; do
|
||||||
set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
|
set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
|
||||||
set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
|
set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
|
||||||
set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
|
set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
|
||||||
|
set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}")
|
||||||
|
|
||||||
save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
|
save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
|
||||||
if [ ${#gpu} -le 2 ];then # train with cpu or single gpu
|
if [ ${#gpu} -le 2 ];then # train with cpu or single gpu
|
||||||
cmd="${python} ${run_train} ${train_use_gpu_key}=${use_gpu} ${save_model_key}=${save_log} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} "
|
cmd="${python} ${run_train} ${set_use_gpu} ${save_model_key}=${save_log} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} "
|
||||||
elif [ ${#gpu} -le 15 ];then # train with multi-gpu
|
elif [ ${#gpu} -le 15 ];then # train with multi-gpu
|
||||||
cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${save_model_key}=${save_log} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}"
|
cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${save_model_key}=${save_log} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}"
|
||||||
else # train with multi-machine
|
else # train with multi-machine
|
||||||
|
@ -247,7 +253,7 @@ for gpu in ${gpu_list[*]}; do
|
||||||
|
|
||||||
# run eval
|
# run eval
|
||||||
if [ ${eval_py} != "null" ]; then
|
if [ ${eval_py} != "null" ]; then
|
||||||
eval_cmd="${python} ${eval_py} ${save_model_key}=${save_log} ${pretrain_model_key}=${save_log}/${train_model_name}"
|
eval_cmd="${python} ${eval_py} ${save_model_key}=${save_log} ${pretrain_model_key}=${save_log}/${train_model_name} ${set_use_gpu}"
|
||||||
eval $eval_cmd
|
eval $eval_cmd
|
||||||
status_check $? "${eval_cmd}" "${status_log}"
|
status_check $? "${eval_cmd}" "${status_log}"
|
||||||
fi
|
fi
|
||||||
|
|
Loading…
Reference in New Issue