Merge remote-tracking branch 'upstream/dygraph' into dy3

This commit is contained in:
Leif 2020-12-12 09:52:20 +08:00
commit 43ccde7d88
13 changed files with 95 additions and 537 deletions

View File

@ -1,130 +0,0 @@
Global:
use_gpu: true
epoch_num: 1200
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/det_r50_vd/
save_epoch_step: 1200
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: 8
# if pretrained_model is saved in static mode, load_static_weights must set to True
load_static_weights: True
cal_metric_during_train: False
pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained/
checkpoints:
save_inference_dir:
use_visualdl: True
infer_img: doc/imgs_en/img_10.jpg
save_res_path: ./output/det_db/predicts_db.txt
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
learning_rate:
lr: 0.001
regularizer:
name: 'L2'
factor: 0
Architecture:
type: det
algorithm: DB
Transform:
Backbone:
name: ResNet
layers: 50
Neck:
name: FPN
out_channels: 256
Head:
name: DBHead
k: 50
Loss:
name: DBLoss
balance_loss: true
main_loss_type: DiceLoss
alpha: 5
beta: 10
ohem_ratio: 3
PostProcess:
name: DBPostProcess
thresh: 0.3
box_thresh: 0.6
max_candidates: 1000
unclip_ratio: 1.5
Metric:
name: DetMetric
main_indicator: hmean
TRAIN:
dataset:
name: SimpleDataSet
data_dir: ./detection/
file_list:
- ./detection/train_icdar2015_label.txt # dataset1
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- IaaAugment:
augmenter_args:
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
- { 'type': Affine, 'args': { 'rotate': [ -10,10 ] } }
- { 'type': Resize,'args': { 'size': [ 0.5,3 ] } }
- EastRandomCropData:
size: [ 640,640 ]
max_tries: 50
keep_ratio: true
- MakeBorderMap:
shrink_ratio: 0.4
thresh_min: 0.3
thresh_max: 0.7
- MakeShrinkMap:
shrink_ratio: 0.4
min_text_size: 8
- NormalizeImage:
scale: 1./255.
mean: [ 0.485, 0.456, 0.406 ]
std: [ 0.229, 0.224, 0.225 ]
order: 'hwc'
- ToCHWImage:
- keepKeys:
keep_keys: ['image','threshold_map','threshold_mask','shrink_map','shrink_mask'] # dataloader will return list in this order
loader:
shuffle: True
drop_last: False
batch_size: 16
num_workers: 8
EVAL:
dataset:
name: SimpleDataSet
data_dir: ./detection/
file_list:
- ./detection/test_icdar2015_label.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
image_shape: [736,1280]
- NormalizeImage:
scale: 1./255.
mean: [ 0.485, 0.456, 0.406 ]
std: [ 0.229, 0.224, 0.225 ]
order: 'hwc'
- ToCHWImage:
- keepKeys:
keep_keys: ['image','shape','polys','ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size: 1 # must be 1
num_workers: 8

View File

@ -1,106 +0,0 @@
Global:
use_gpu: false
epoch_num: 500
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/rec/mv3_none_bilstm_ctc/
save_epoch_step: 500
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: 127
# if pretrained_model is saved in static mode, load_static_weights must set to True
load_static_weights: True
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_words/ch/word_1.jpg
# for data or label process
max_text_length: 80
character_dict_path: ppocr/utils/ppocr_keys_v1.txt
character_type: 'ch'
use_space_char: False
infer_mode: False
use_tps: False
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
learning_rate:
lr: 0.001
regularizer:
name: 'L2'
factor: 0.00001
Architecture:
type: rec
algorithm: CRNN
Transform:
Backbone:
name: MobileNetV3
scale: 0.5
model_name: small
small_stride: [ 1, 2, 2, 2 ]
Neck:
name: SequenceEncoder
encoder_type: fc
hidden_size: 96
Head:
name: CTC
fc_decay: 0.00001
Loss:
name: CTCLoss
PostProcess:
name: CTCLabelDecode
Metric:
name: RecMetric
main_indicator: acc
TRAIN:
dataset:
name: SimpleDataSet
data_dir: ./rec
file_list:
- ./rec/train.txt # dataset1
ratio_list: [ 0.4,0.6 ]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- CTCLabelEncode: # Class handling label
- RecAug:
- RecResizeImg:
image_shape: [ 3,32,320 ]
- keepKeys:
keep_keys: [ 'image','label','length' ] # dataloader will return list in this order
loader:
batch_size: 256
shuffle: True
drop_last: True
num_workers: 8
EVAL:
dataset:
name: SimpleDataSet
data_dir: ./rec
file_list:
- ./rec/val.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- CTCLabelEncode: # Class handling label
- RecResizeImg:
image_shape: [ 3,32,320 ]
- keepKeys:
keep_keys: [ 'image','label','length' ] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False
batch_size: 256
num_workers: 8

View File

@ -1,104 +0,0 @@
Global:
use_gpu: false
epoch_num: 500
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/rec/res34_none_bilstm_ctc/
save_epoch_step: 500
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: 127
# if pretrained_model is saved in static mode, load_static_weights must set to True
load_static_weights: True
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_words/ch/word_1.jpg
# for data or label process
max_text_length: 80
character_dict_path: ppocr/utils/ppocr_keys_v1.txt
character_type: 'ch'
use_space_char: False
infer_mode: False
use_tps: False
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
learning_rate:
lr: 0.001
regularizer:
name: 'L2'
factor: 0.00001
Architecture:
type: rec
algorithm: CRNN
Transform:
Backbone:
name: ResNet
layers: 34
Neck:
name: SequenceEncoder
encoder_type: fc
hidden_size: 96
Head:
name: CTC
fc_decay: 0.00001
Loss:
name: CTCLoss
PostProcess:
name: CTCLabelDecode
Metric:
name: RecMetric
main_indicator: acc
TRAIN:
dataset:
name: SimpleDataSet
data_dir: ./rec
file_list:
- ./rec/train.txt # dataset1
ratio_list: [ 0.4,0.6 ]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- CTCLabelEncode: # Class handling label
- RecAug:
- RecResizeImg:
image_shape: [ 3,32,320 ]
- keepKeys:
keep_keys: [ 'image','label','length' ] # dataloader will return list in this order
loader:
batch_size: 256
shuffle: True
drop_last: True
num_workers: 8
EVAL:
dataset:
name: SimpleDataSet
data_dir: ./rec
file_list:
- ./rec/val.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- CTCLabelEncode: # Class handling label
- RecResizeImg:
image_shape: [ 3,32,320 ]
- keepKeys:
keep_keys: [ 'image','label','length' ] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False
batch_size: 256
num_workers: 8

View File

@ -1,103 +0,0 @@
Global:
use_gpu: false
epoch_num: 500
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/rec/res34_none_none_ctc/
save_epoch_step: 500
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: 127
# if pretrained_model is saved in static mode, load_static_weights must set to True
load_static_weights: True
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_words/ch/word_1.jpg
# for data or label process
max_text_length: 80
character_dict_path: ppocr/utils/ppocr_keys_v1.txt
character_type: 'ch'
use_space_char: False
infer_mode: False
use_tps: False
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
learning_rate:
lr: 0.001
regularizer:
name: 'L2'
factor: 0.00001
Architecture:
type: rec
algorithm: CRNN
Transform:
Backbone:
name: ResNet
layers: 34
Neck:
name: SequenceEncoder
encoder_type: reshape
Head:
name: CTC
fc_decay: 0.00001
Loss:
name: CTCLoss
PostProcess:
name: CTCLabelDecode
Metric:
name: RecMetric
main_indicator: acc
TRAIN:
dataset:
name: SimpleDataSet
data_dir: ./rec
file_list:
- ./rec/train.txt # dataset1
ratio_list: [ 0.4,0.6 ]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- CTCLabelEncode: # Class handling label
- RecAug:
- RecResizeImg:
image_shape: [ 3,32,320 ]
- keepKeys:
keep_keys: [ 'image','label','length' ] # dataloader will return list in this order
loader:
batch_size: 256
shuffle: True
drop_last: True
num_workers: 8
EVAL:
dataset:
name: SimpleDataSet
data_dir: ./rec
file_list:
- ./rec/val.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- CTCLabelEncode: # Class handling label
- RecResizeImg:
image_shape: [ 3,32,320 ]
- keepKeys:
keep_keys: [ 'image','label','length' ] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False
batch_size: 256
num_workers: 8

View File

@ -41,7 +41,7 @@ inference 模型(`paddle.jit.save`保存的模型)
下载超轻量级中文检测模型:
```
wget -P ./ch_lite/ {link} && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_det_train.tar -C ./ch_lite/
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_det_train.tar -C ./ch_lite/
```
上述模型是以MobileNetV3为backbone训练的DB算法将训练好的模型转换成inference模型只需要运行如下命令
```
@ -51,9 +51,9 @@ wget -P ./ch_lite/ {link} && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_det_train.tar
# Global.load_static_weights 参数需要设置为 False。
# Global.save_inference_dir参数设置转换的模型将保存的地址。
python3 tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.checkpoints=./ch_lite/ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db/
python3 tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db/
```
转inference模型时使用的配置文件和训练时使用的配置文件相同。另外还需要设置配置文件中的`Global.checkpoints`参数,其指向训练中保存的模型参数文件。
转inference模型时使用的配置文件和训练时使用的配置文件相同。另外还需要设置配置文件中的`Global.pretrained_model`参数,其指向训练中保存的模型参数文件。
转换成功后,在模型保存目录下有三个文件:
```
inference/det_db/
@ -67,7 +67,7 @@ inference/det_db/
下载超轻量中文识别模型:
```
wget -P ./ch_lite/ {link} && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_rec_train.tar -C ./ch_lite/
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_rec_train.tar -C ./ch_lite/
```
识别模型转inference模型与检测的方式相同如下
@ -78,7 +78,7 @@ wget -P ./ch_lite/ {link} && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_rec_train.tar
# Global.load_static_weights 参数需要设置为 False。
# Global.save_inference_dir参数设置转换的模型将保存的地址。
python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.checkpoints=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn/
python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn/
```
**注意:**如果您是在自己的数据集上训练的模型,并且调整了中文字符的字典文件,请注意修改配置文件中的`character_dict_path`是否是所需要的字典文件。
@ -96,7 +96,7 @@ python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_trai
下载方向分类模型:
```
wget -P ./ch_lite/ {link} && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_cls_train.tar -C ./ch_lite/
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_cls_train.tar -C ./ch_lite/
```
方向分类模型转inference模型与检测的方式相同如下
@ -107,7 +107,7 @@ wget -P ./ch_lite/ {link} && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_cls_train.tar
# Global.load_static_weights 参数需要设置为 False。
# Global.save_inference_dir参数设置转换的模型将保存的地址。
python3 tools/export_model.py -c configs/cls/cls_mv3.yml -o Global.checkpoints=./ch_lite/ch_ppocr_mobile_v2.0_cls_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/cls/
python3 tools/export_model.py -c configs/cls/cls_mv3.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_cls_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/cls/
```
转换成功后,在目录下有三个文件:
@ -152,10 +152,10 @@ python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_di
<a name="DB文本检测模型推理"></a>
### 2. DB文本检测模型推理
首先将DB文本检测训练过程中保存的模型转换成inference model。以基于Resnet50_vd骨干网络在ICDAR2015英文数据集训练的模型为例[模型下载地址](link)),可以使用如下命令进行转换:
首先将DB文本检测训练过程中保存的模型转换成inference model。以基于Resnet50_vd骨干网络在ICDAR2015英文数据集训练的模型为例 [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar) ),可以使用如下命令进行转换:
```
python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.checkpoints=./det_r50_vd_db_v2.0.train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db
python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.pretrained_model=./det_r50_vd_db_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db
```
DB文本检测模型推理可以执行如下命令
@ -173,10 +173,10 @@ python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_
<a name="EAST文本检测模型推理"></a>
### 3. EAST文本检测模型推理
首先将EAST文本检测训练过程中保存的模型转换成inference model。以基于Resnet50_vd骨干网络在ICDAR2015英文数据集训练的模型为例[模型下载地址](link)),可以使用如下命令进行转换:
首先将EAST文本检测训练过程中保存的模型转换成inference model。以基于Resnet50_vd骨干网络在ICDAR2015英文数据集训练的模型为例 [模型下载地址 (coming soon)](link) ),可以使用如下命令进行转换:
```
python3 tools/export_model.py -c configs/det/det_r50_vd_east.yml -o Global.checkpoints=./det_r50_vd_east_v2.0.train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_east
python3 tools/export_model.py -c configs/det/det_r50_vd_east.yml -o Global.pretrained_model=./det_r50_vd_east_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_east
```
**EAST文本检测模型推理需要设置参数`--det_algorithm="EAST"`**,可以执行如下命令:
@ -194,9 +194,9 @@ python3 tools/infer/predict_det.py --det_algorithm="EAST" --image_dir="./doc/img
<a name="SAST文本检测模型推理"></a>
### 4. SAST文本检测模型推理
#### (1). 四边形文本检测模型ICDAR2015
首先将SAST文本检测训练过程中保存的模型转换成inference model。以基于Resnet50_vd骨干网络在ICDAR2015英文数据集训练的模型为例([模型下载地址](link)),可以使用如下命令进行转换:
首先将SAST文本检测训练过程中保存的模型转换成inference model。以基于Resnet50_vd骨干网络在ICDAR2015英文数据集训练的模型为例([模型下载地址(coming soon)](link)),可以使用如下命令进行转换:
```
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_icdar15.yml -o Global.checkpoints=./det_r50_vd_sast_icdar15_v2.0.train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_ic15
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_icdar15.yml -o Global.pretrained_model=./det_r50_vd_sast_icdar15_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_ic15
```
**SAST文本检测模型推理需要设置参数`--det_algorithm="SAST"`**,可以执行如下命令:
@ -208,10 +208,10 @@ python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/img
![](../imgs_results/det_res_img_10_sast.jpg)
#### (2). 弯曲文本检测模型Total-Text
首先将SAST文本检测训练过程中保存的模型转换成inference model。以基于Resnet50_vd骨干网络在Total-Text英文数据集训练的模型为例[模型下载地址](link)),可以使用如下命令进行转换:
首先将SAST文本检测训练过程中保存的模型转换成inference model。以基于Resnet50_vd骨干网络在Total-Text英文数据集训练的模型为例[模型下载地址(coming soon)](link)),可以使用如下命令进行转换:
```
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_totaltext.yml -o Global.checkpoints=./det_r50_vd_sast_totaltext_v2.0.train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_tt
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_totaltext.yml -o Global.pretrained_model=./det_r50_vd_sast_totaltext_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_tt
```
@ -254,10 +254,10 @@ Predicts of ./doc/imgs_words/ch/word_4.jpg:['实力活力', 0.89552695]
我们以 CRNN 为例介绍基于CTC损失的识别模型推理。 Rosetta 使用方式类似不用设置识别算法参数rec_algorithm。
首先将 Rosetta 文本识别训练过程中保存的模型转换成inference model。以基于Resnet34_vd骨干网络使用MJSynth和SynthText两个英文文本识别合成数据集训练
的模型为例([模型下载地址](link)),可以使用如下命令进行转换:
的模型为例( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar) ),可以使用如下命令进行转换:
```
python3 tools/export_model.py -c configs/det/rec_r34_vd_none_bilstm_ctc.yml -o Global.checkpoints=./rec_r34_vd_none_bilstm_ctc_v2.0.train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn
python3 tools/export_model.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model=./rec_r34_vd_none_bilstm_ctc_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn
```
@ -313,9 +313,9 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" -
执行命令后,上图的预测结果为:
``` text
2020-09-19 16:15:05,076-INFO: index: [205 206 38 39]
2020-09-19 16:15:05,077-INFO: word : 바탕으로
2020-09-19 16:15:05,077-INFO: score: 0.9171358942985535
2020-09-19 16:15:05,076-INFO: index: [205 206 38 39]
2020-09-19 16:15:05,077-INFO: word : 바탕으로
2020-09-19 16:15:05,077-INFO: score: 0.9171358942985535
```
<a name="方向分类模型推理"></a>
@ -337,8 +337,7 @@ python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words/ch/word_4.jpg"
执行命令后,上面图像的预测结果(分类的方向和得分)会打印到屏幕上,示例如下:
```
infer_img: doc/imgs_words/ch/word_1.jpg
result: ('0', 0.9998784)
Predicts of ./doc/imgs_words/ch/word_4.jpg:['0', 0.9999982]
```
<a name="文本检测、方向分类和文字识别串联推理"></a>

View File

@ -9,12 +9,12 @@
## 2.inference模型下载
* 移动端和服务器端的检测与识别模型如下,更多模型下载(包括多语言),可以参考[PP-OCR v1.1 系列模型下载](../doc_ch/models_list.md)
* 移动端和服务器端的检测与识别模型如下,更多模型下载(包括多语言),可以参考[PP-OCR v2.0 系列模型下载](../doc_ch/models_list.md)
| 模型简介 | 模型名称 |推荐场景 | 检测模型 | 方向分类器 | 识别模型 |
| ------------ | --------------- | ----------------|---- | ---------- | -------- |
| 中英文超轻量OCR模型xM | |移动端&服务器端|[推理模型](link) / [预训练模型](link)|[推理模型]({}) / [预训练模型]({}) |[推理模型]({}) / [预训练模型]({}) |
| 中英文通用OCR模型xM | |服务器端 |[推理模型]({}) / [预训练模型]({}) |[推理模型]({}) / [预训练模型]({}) |[推理模型]({}) / [预训练模型]({}}) |
| 中英文超轻量OCR模型8.1M | ch_ppocr_mobile_v2.0_xx |移动端&服务器端|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) |
| 中英文通用OCR模型155.1M | ch_ppocr_server_v2.0_xx |服务器端 |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) |
* windows 环境下如果没有安装wget,下载模型时可将链接复制到浏览器中下载,并解压放置在相应目录下
@ -37,28 +37,29 @@ cd ..
```
mkdir inference && cd inference
# 下载超轻量级中文OCR模型的检测模型并解压
wget {} && tar xf ch_ppocr_mobile_v1.1_det_infer.tar
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_det_infer.tar
# 下载超轻量级中文OCR模型的识别模型并解压
wget {} && tar xf ch_ppocr_mobile_v1.1_rec_infer.tar
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
# 下载超轻量级中文OCR模型的文本方向分类器模型并解压
wget {} && tar xf ch_ppocr_mobile_v1.1_cls_infer.tar
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar && tar xf ch_ppocr_mobile_v2.0_cls_infer.tar
cd ..
```
解压完毕后应有如下文件结构:
```
|-inference
|-ch_ppocr_mobile_v1.1_det_infer
|- model
|- params
|-ch_ppocr_mobile_v1.1_rec_infer
|- model
|- params
|-ch_ppocr_mobile-v1.1_cls_infer
|- model
|- params
...
├── ch_ppocr_mobile_v2.0_cls_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
├── ch_ppocr_mobile_v2.0_det_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
├── ch_ppocr_mobile_v2.0_rec_infer
├── inference.pdiparams
├── inference.pdiparams.info
└── inference.pdmodel
```
## 3.单张图像或者图像集合预测
@ -68,13 +69,13 @@ cd ..
```bash
# 预测image_dir指定的单张图像
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_ppocr_mobile_v1.1_det_infer/" --rec_model_dir="./inference/ch_ppocr_mobile_v1.1_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v1.1_cls_infer/" --use_angle_cls=True --use_space_char=True
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_ppocr_mobile_v2.0_det_infer/" --rec_model_dir="./inference/ch_ppocr_mobile_v2.0_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v2.0_cls_infer/" --use_angle_cls=True --use_space_char=True
# 预测image_dir指定的图像集合
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/" --det_model_dir="./inference/ch_ppocr_mobile_v1.1_det_infer/" --rec_model_dir="./inference/ch_ppocr_mobile_v1.1_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v1.1_cls_infer/" --use_angle_cls=True --use_space_char=True
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/" --det_model_dir="./inference/ch_ppocr_mobile_v2.0_det_infer/" --rec_model_dir="./inference/ch_ppocr_mobile_v2.0_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v2.0_cls_infer/" --use_angle_cls=True --use_space_char=True
# 如果想使用CPU进行预测需设置use_gpu参数为False
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_ppocr_mobile_v1.1_det_infer/" --rec_model_dir="./inference/ch_ppocr_mobile_v1.1_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v1.1_cls_infer/" --use_angle_cls=True --use_space_char=True --use_gpu=False
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_ppocr_mobile_v2.0_det_infer/" --rec_model_dir="./inference/ch_ppocr_mobile_v2.0_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v2.0_cls_infer/" --use_angle_cls=True --use_space_char=True --use_gpu=False
```
- 通用中文OCR模型
@ -83,7 +84,7 @@ python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_mode
```bash
# 预测image_dir指定的单张图像
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_ppocr_server_v1.1_det_infer/" --rec_model_dir="./inference/ch_ppocr_server_v1.1_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v1.1_cls_infer/" --use_angle_cls=True --use_space_char=True
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_ppocr_server_v2.0_det_infer/" --rec_model_dir="./inference/ch_ppocr_server_v2.0_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v2.0_cls_infer/" --use_angle_cls=True --use_space_char=True
```
* 注意:

View File

@ -43,21 +43,21 @@ Next, we first introduce how to convert a trained model into an inference model,
Download the lightweight Chinese detection model:
```
wget -P ./ch_lite/ {link} && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_det_train.tar -C ./ch_lite/
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_det_train.tar -C ./ch_lite/
```
The above model is a DB algorithm trained with MobileNetV3 as the backbone. To convert the trained model into an inference model, just run the following command:
```
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
# Global.checkpoints parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
# Global.load_static_weights needs to be set to False
# Global.save_inference_dir Set the address where the converted model will be saved.
python3 tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.checkpoints=./ch_lite/ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db/
python3 tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db/
```
When converting to an inference model, the configuration file used is the same as the configuration file used during training. In addition, you also need to set the `Global.checkpoints` parameter in the configuration file.
When converting to an inference model, the configuration file used is the same as the configuration file used during training. In addition, you also need to set the `Global.pretrained_model` parameter in the configuration file.
After the conversion is successful, there are three files in the model save directory:
```
inference/det_db/
@ -71,18 +71,18 @@ inference/det_db/
Download the lightweight Chinese recognition model:
```
wget -P ./ch_lite/ {link} && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_rec_train.tar -C ./ch_lite/
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_rec_train.tar -C ./ch_lite/
```
The recognition model is converted to the inference model in the same way as the detection, as follows:
```
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
# Global.checkpoints parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
# Global.load_static_weights needs to be set to False
# Global.save_inference_dir Set the address where the converted model will be saved.
python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.checkpoints=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn/
python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn/
```
If you have a model trained on your own dataset with a different dictionary file, please make sure that you modify the `character_dict_path` in the configuration file to your dictionary file path.
@ -100,18 +100,18 @@ inference/det_db/
Download the angle classification model:
```
wget -P ./ch_lite/ {link} && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_cls_train.tar -C ./ch_lite/
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_cls_train.tar -C ./ch_lite/
```
The angle classification model is converted to the inference model in the same way as the detection, as follows:
```
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
# Global.checkpoints parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
# Global.load_static_weights needs to be set to False
# Global.save_inference_dir Set the address where the converted model will be saved.
python3 tools/export_model.py -c configs/cls/cls_mv3.yml -o Global.checkpoints=./ch_lite/ch_ppocr_mobile_v2.0_cls_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/cls/
python3 tools/export_model.py -c configs/cls/cls_mv3.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_cls_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/cls/
```
After the conversion is successful, there are two files in the directory:
@ -158,10 +158,10 @@ python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_di
<a name="DB_DETECTION"></a>
### 2. DB TEXT DETECTION MODEL INFERENCE
First, convert the model saved in the DB text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](link)), you can use the following command to convert:
First, convert the model saved in the DB text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)), you can use the following command to convert:
```
python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.checkpoints=./det_r50_vd_db_v2.0.train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db
python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.pretrained_model=./det_r50_vd_db_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db
```
DB text detection model inference, you can execute the following command:
@ -179,10 +179,10 @@ The visualized text detection results are saved to the `./inference_results` fol
<a name="EAST_DETECTION"></a>
### 3. EAST TEXT DETECTION MODEL INFERENCE
First, convert the model saved in the EAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](link)), you can use the following command to convert:
First, convert the model saved in the EAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link (coming soon)](link)), you can use the following command to convert:
```
python3 tools/export_model.py -c configs/det/det_r50_vd_east.yml -o Global.checkpoints=./det_r50_vd_east_v2.0.train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_east
python3 tools/export_model.py -c configs/det/det_r50_vd_east.yml -o Global.pretrained_model=./det_r50_vd_east_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_east
```
**For EAST text detection model inference, you need to set the parameter ``--det_algorithm="EAST"``**, run the following command:
@ -200,10 +200,10 @@ The visualized text detection results are saved to the `./inference_results` fol
<a name="SAST_DETECTION"></a>
### 4. SAST TEXT DETECTION MODEL INFERENCE
#### (1). Quadrangle text detection model (ICDAR2015)
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](link)), you can use the following command to convert:
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link (coming soon)](link)), you can use the following command to convert:
```
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_icdar15.yml -o Global.checkpoints=./det_r50_vd_sast_icdar15_v2.0.train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_ic15
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_icdar15.yml -o Global.pretrained_model=./det_r50_vd_sast_icdar15_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_ic15
```
**For SAST quadrangle text detection model inference, you need to set the parameter `--det_algorithm="SAST"`**, run the following command:
@ -217,10 +217,10 @@ The visualized text detection results are saved to the `./inference_results` fol
![](../imgs_results/det_res_img_10_sast.jpg)
#### (2). Curved text detection model (Total-Text)
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the Total-Text English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/SAST/sast_r50_vd_total_text.tar)), you can use the following command to convert:
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the Total-Text English dataset as an example ([model download link (coming soon)](https://paddleocr.bj.bcebos.com/SAST/sast_r50_vd_total_text.tar)), you can use the following command to convert:
```
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_totaltext.yml -o Global.checkpoints=./det_r50_vd_sast_totaltext_v2.0.train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_tt
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_totaltext.yml -o Global.pretrained_model=./det_r50_vd_sast_totaltext_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_tt
```
**For SAST curved text detection model inference, you need to set the parameter `--det_algorithm="SAST"` and `--det_sast_polygon=True`**, run the following command:
@ -262,10 +262,10 @@ Predicts of ./doc/imgs_words/ch/word_4.jpg:['实力活力', 0.89552695]
Taking CRNN as an example, we introduce the recognition model inference based on CTC loss. Rosetta and Star-Net are used in a similar way, No need to set the recognition algorithm parameter rec_algorithm.
First, convert the model saved in the CRNN text recognition training process into an inference model. Taking the model based on Resnet34_vd backbone network, using MJSynth and SynthText (two English text recognition synthetic datasets) for training, as an example ([model download address](link)). It can be converted as follow:
First, convert the model saved in the CRNN text recognition training process into an inference model. Taking the model based on Resnet34_vd backbone network, using MJSynth and SynthText (two English text recognition synthetic datasets) for training, as an example ([model download address](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)). It can be converted as follow:
```
python3 tools/export_model.py -c configs/det/rec_r34_vd_none_bilstm_ctc.yml -o Global.checkpoints=./rec_r34_vd_none_bilstm_ctc_v2.0.train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn
python3 tools/export_model.py -c configs/det/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model=./rec_r34_vd_none_bilstm_ctc_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn
```
For CRNN text recognition model inference, execute the following commands:
@ -335,7 +335,7 @@ The following will introduce the angle classification model inference.
For angle classification model inference, you can execute the following commands:
```
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --cls_model_dir="./inference/cls/"
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words_en/word_10.png" --cls_model_dir="./inference/cls/"
```
![](../imgs_words_en/word_10.png)
@ -343,8 +343,7 @@ python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words/ch/word_4.jpg"
After executing the command, the prediction results (classification angle and score) of the above image will be printed on the screen.
```
infer_img: doc/imgs_words_en/word_10.png
result: ('0', 0.9999995)
Predicts of ./doc/imgs_words_en/word_10.png:['0', 0.9999995]
```
<a name="CONCATENATION"></a>

View File

@ -9,13 +9,13 @@ Please refer to [quick installation](./installation_en.md) to configure the Padd
## 2.inference models
The detection and recognition models on the mobile and server sides are as follows. For more models (including multiple languages), please refer to [PP-OCR v1.1 series model list](../doc_ch/models_list.md)
The detection and recognition models on the mobile and server sides are as follows. For more models (including multiple languages), please refer to [PP-OCR v2.0 series model list](../doc_ch/models_list.md)
| Model introduction | Model name | Recommended scene | Detection model | Direction Classifier | Recognition model |
| Model introduction | Model name | Recommended scene | Detection model | Direction Classifier | Recognition model |
| ------------ | --------------- | ----------------|---- | ---------- | -------- |
| Ultra-lightweight Chinese OCR modelxM | ch_ppocr_mobile_v1.1_xx |Mobile-side/Server-side|[inference model](link) / [pretrained model](link)|[inference model](link) / [pretrained model](link) |[inference model](link) / [pretrained model](link) |
| Universal Chinese OCR modelxM |ch_ppocr_server_v1.1_xx|Server-side |[inference model](link) / [pretrained model](link) |[inference model](link) / [pretrained model](link) |[inference model](link) / [pretrained model](link) |
| Ultra-lightweight Chinese OCR model8.1M | ch_ppocr_mobile_v2.0_xx |Mobile-side/Server-side|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) |
| Universal Chinese OCR model155.1M | ch_ppocr_server_v2.0_xx |Server-side |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) |
* If `wget` is not installed in the windows environment, you can copy the link to the browser to download when downloading the model, then uncompress it and place it in the corresponding directory.
@ -37,28 +37,29 @@ Take the ultra-lightweight model as an example:
```
mkdir inference && cd inference
# Download the detection model of the ultra-lightweight Chinese OCR model and uncompress it
wget link && tar xf ch_ppocr_mobile_v1.1_det_infer.tar
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_det_infer.tar
# Download the recognition model of the ultra-lightweight Chinese OCR model and uncompress it
wget link && tar xf ch_ppocr_mobile_v1.1_rec_infer.tar
# Download the direction classifier model of the ultra-lightweight Chinese OCR model and uncompress it
wget link && tar xf ch_ppocr_mobile_v1.1_cls_infer.tar
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
# Download the angle classifier model of the ultra-lightweight Chinese OCR model and uncompress it
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar && tar xf ch_ppocr_mobile_v2.0_cls_infer.tar
cd ..
```
After decompression, the file structure should be as follows:
```
|-inference
|-ch_ppocr_mobile_v1.1_det_infer
|- model
|- params
|-ch_ppocr_mobile_v1.1_rec_infer
|- model
|- params
|-ch_ppocr_mobile_v1.1_cls_infer
|- model
|- params
...
├── ch_ppocr_mobile_v2.0_cls_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
├── ch_ppocr_mobile_v2.0_det_infer
│ ├── inference.pdiparams
│ ├── inference.pdiparams.info
│ └── inference.pdmodel
├── ch_ppocr_mobile_v2.0_rec_infer
├── inference.pdiparams
├── inference.pdiparams.info
└── inference.pdmodel
```
## 3. Single image or image set prediction
@ -70,13 +71,13 @@ After decompression, the file structure should be as follows:
```bash
# Predict a single image specified by image_dir
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_ppocr_mobile_v1.1_det_infer/" --rec_model_dir="./inference/ch_ppocr_mobile_v1.1_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v1.1_cls_infer/" --use_angle_cls=True --use_space_char=True
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_ppocr_mobile_v2.0_det_infer/" --rec_model_dir="./inference/ch_ppocr_mobile_v2.0_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v2.0_cls_infer/" --use_angle_cls=True --use_space_char=True
# Predict imageset specified by image_dir
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/" --det_model_dir="./inference/ch_ppocr_mobile_v1.1_det_infer/" --rec_model_dir="./inference/ch_ppocr_mobile_v1.1_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v1.1_cls_infer/" --use_angle_cls=True --use_space_char=True
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/" --det_model_dir="./inference/ch_ppocr_mobile_v2.0_det_infer/" --rec_model_dir="./inference/ch_ppocr_mobile_v2.0_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v2.0_cls_infer/" --use_angle_cls=True --use_space_char=True
# If you want to use the CPU for prediction, you need to set the use_gpu parameter to False
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_ppocr_mobile_v1.1_det_infer/" --rec_model_dir="./inference/ch_ppocr_mobile_v1.1_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v1.1_cls_infer/" --use_angle_cls=True --use_space_char=True --use_gpu=False
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_ppocr_mobile_v2.0_det_infer/" --rec_model_dir="./inference/ch_ppocr_mobile_v2.0_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v2.0_cls_infer/" --use_angle_cls=True --use_space_char=True --use_gpu=False
```
- Universal Chinese OCR model
@ -85,7 +86,7 @@ Please follow the above steps to download the corresponding models and update th
```
# Predict a single image specified by image_dir
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_ppocr_server_v1.1_det_infer/" --rec_model_dir="./inference/ch_ppocr_server_v1.1_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v1.1_cls_infer/" --use_angle_cls=True --use_space_char=True
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_ppocr_server_v2.0_det_infer/" --rec_model_dir="./inference/ch_ppocr_server_v2.0_rec_infer/" --cls_model_dir="./inference/ch_ppocr_mobile_v2.0_cls_infer/" --use_angle_cls=True --use_space_char=True
```
* Note

View File

@ -67,6 +67,7 @@ def build_dataloader(config, mode, device, logger):
drop_last = loader_config['drop_last']
num_workers = loader_config['num_workers']
use_shared_memory = False
if mode == "Train":
#Distribute data to multiple cards
batch_sampler = DistributedBatchSampler(
@ -74,6 +75,7 @@ def build_dataloader(config, mode, device, logger):
batch_size=batch_size,
shuffle=False,
drop_last=drop_last)
use_shared_memory = True
else:
#Distribute data to single card
batch_sampler = BatchSampler(
@ -87,6 +89,7 @@ def build_dataloader(config, mode, device, logger):
batch_sampler=batch_sampler,
places=device,
num_workers=num_workers,
return_list=True)
return_list=True,
use_shared_memory=use_shared_memory)
return data_loader

View File

@ -28,7 +28,7 @@ from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import init_model
from ppocr.utils.logging import get_logger
from tools.program import load_config, merge_config,ArgsParser
from tools.program import load_config, merge_config, ArgsParser
def main():
@ -36,7 +36,6 @@ def main():
config = load_config(FLAGS.config)
merge_config(FLAGS.opt)
logger = get_logger()
print(config)
# build post process
post_process_class = build_post_process(config['PostProcess'],

View File

@ -113,7 +113,6 @@ def merge_config(config):
global_config.keys(), sub_keys[0])
cur = global_config[sub_keys[0]]
for idx, sub_key in enumerate(sub_keys[1:]):
assert (sub_key in cur)
if idx == len(sub_keys) - 2:
cur[sub_key] = value
else: