后处理添加类型判断

This commit is contained in:
WenmuZhou 2020-11-09 18:19:42 +08:00
parent 4402e62959
commit 44840726ff
3 changed files with 16 additions and 10 deletions

View File

@ -18,6 +18,7 @@ from __future__ import print_function
import numpy as np
import cv2
import paddle
from shapely.geometry import Polygon
import pyclipper
@ -130,7 +131,9 @@ class DBPostProcess(object):
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
def __call__(self, pred, shape_list):
pred = pred.numpy()[:, 0, :, :]
if isinstance(pred, paddle.Tensor):
pred = pred.numpy()
pred = pred[:, 0, :, :]
segmentation = pred > self.thresh
boxes_batch = []
@ -140,4 +143,4 @@ class DBPostProcess(object):
pred[batch_index], segmentation[batch_index], width, height)
boxes_batch.append({'points': boxes})
return boxes_batch
return boxes_batch

View File

@ -1,4 +1,5 @@
import cv2
import paddle
import numpy as np
import pyclipper
from shapely.geometry import Polygon
@ -23,7 +24,9 @@ class DBPostProcess():
pred:
binary: text region segmentation map, with shape (N, 1,H, W)
'''
pred = pred.numpy()[:, 0, :, :]
if isinstance(pred, paddle.Tensor):
pred = pred.numpy()
pred = pred[:, 0, :, :]
segmentation = self.binarize(pred)
batch_out = []
for batch_index in range(pred.shape[0]):
@ -130,4 +133,4 @@ class DBPostProcess():
box[:, 0] = box[:, 0] - xmin
box[:, 1] = box[:, 1] - ymin
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]

View File

@ -100,9 +100,10 @@ class CTCLabelDecode(BaseRecLabelDecode):
character_type, use_space_char)
def __call__(self, preds, label=None, *args, **kwargs):
if isinstance(preds, paddle.Tensor):
preds = preds.numpy()
# out = self.decode_preds(preds)
preds = F.softmax(preds, axis=2).numpy()
preds_idx = preds.argmax(axis=2)
preds_prob = preds.max(axis=2)
text = self.decode(preds_idx, preds_prob)
@ -116,19 +117,18 @@ class CTCLabelDecode(BaseRecLabelDecode):
return dict_character
def decode_preds(self, preds):
probs = F.softmax(preds, axis=2).numpy()
probs_ind = np.argmax(probs, axis=2)
probs_ind = np.argmax(preds, axis=2)
B, N, _ = preds.shape
l = np.ones(B).astype(np.int64) * N
length = paddle.to_variable(l)
length = paddle.to_tensor(l)
out = paddle.fluid.layers.ctc_greedy_decoder(preds, 0, length)
batch_res = [
x[:idx[0]] for x, idx in zip(out[0].numpy(), out[1].numpy())
]
result_list = []
for sample_idx, ind, prob in zip(batch_res, probs_ind, probs):
for sample_idx, ind, prob in zip(batch_res, probs_ind, preds):
char_list = [self.character[idx] for idx in sample_idx]
valid_ind = np.where(ind != 0)[0]
if len(valid_ind) == 0:
@ -172,4 +172,4 @@ class AttnLabelDecode(BaseRecLabelDecode):
else:
assert False, "unsupport type %s in get_beg_end_flag_idx" \
% beg_or_end
return idx
return idx