split cpp inference
This commit is contained in:
parent
0bf4fc37ff
commit
4a182a897b
|
@ -13,6 +13,7 @@ SET(TENSORRT_DIR "" CACHE PATH "Compile demo with TensorRT")
|
|||
|
||||
set(DEMO_NAME "ocr_system")
|
||||
|
||||
|
||||
macro(safe_set_static_flag)
|
||||
foreach(flag_var
|
||||
CMAKE_CXX_FLAGS CMAKE_CXX_FLAGS_DEBUG CMAKE_CXX_FLAGS_RELEASE
|
||||
|
@ -37,8 +38,10 @@ endif()
|
|||
|
||||
|
||||
if (WIN32)
|
||||
include_directories("${PADDLE_LIB}/paddle/fluid/inference")
|
||||
include_directories("${PADDLE_LIB}/paddle/include")
|
||||
link_directories("${PADDLE_LIB}/paddle/lib")
|
||||
link_directories("${PADDLE_LIB}/paddle/fluid/inference")
|
||||
find_package(OpenCV REQUIRED PATHS ${OPENCV_DIR}/build/ NO_DEFAULT_PATH)
|
||||
|
||||
else ()
|
||||
|
@ -205,7 +208,7 @@ endif()
|
|||
|
||||
set(DEPS ${DEPS} ${OpenCV_LIBS})
|
||||
|
||||
AUX_SOURCE_DIRECTORY(./src SRCS)
|
||||
AUX_SOURCE_DIRECTORY(./src_system SRCS)
|
||||
add_executable(${DEMO_NAME} ${SRCS})
|
||||
|
||||
target_link_libraries(${DEMO_NAME} ${DEPS})
|
||||
|
|
|
@ -0,0 +1,225 @@
|
|||
project(ocr_det CXX C)
|
||||
|
||||
option(WITH_MKL "Compile demo with MKL/OpenBlas support, default use MKL." ON)
|
||||
option(WITH_GPU "Compile demo with GPU/CPU, default use CPU." OFF)
|
||||
option(WITH_STATIC_LIB "Compile demo with static/shared library, default use static." ON)
|
||||
option(WITH_TENSORRT "Compile demo with TensorRT." OFF)
|
||||
|
||||
SET(PADDLE_LIB "" CACHE PATH "Location of libraries")
|
||||
SET(OPENCV_DIR "" CACHE PATH "Location of libraries")
|
||||
SET(CUDA_LIB "" CACHE PATH "Location of libraries")
|
||||
SET(CUDNN_LIB "" CACHE PATH "Location of libraries")
|
||||
SET(TENSORRT_DIR "" CACHE PATH "Compile demo with TensorRT")
|
||||
|
||||
set(DEMO_NAME "ocr_det")
|
||||
|
||||
|
||||
macro(safe_set_static_flag)
|
||||
foreach(flag_var
|
||||
CMAKE_CXX_FLAGS CMAKE_CXX_FLAGS_DEBUG CMAKE_CXX_FLAGS_RELEASE
|
||||
CMAKE_CXX_FLAGS_MINSIZEREL CMAKE_CXX_FLAGS_RELWITHDEBINFO)
|
||||
if(${flag_var} MATCHES "/MD")
|
||||
string(REGEX REPLACE "/MD" "/MT" ${flag_var} "${${flag_var}}")
|
||||
endif(${flag_var} MATCHES "/MD")
|
||||
endforeach(flag_var)
|
||||
endmacro()
|
||||
|
||||
if (WITH_MKL)
|
||||
ADD_DEFINITIONS(-DUSE_MKL)
|
||||
endif()
|
||||
|
||||
if(NOT DEFINED PADDLE_LIB)
|
||||
message(FATAL_ERROR "please set PADDLE_LIB with -DPADDLE_LIB=/path/paddle/lib")
|
||||
endif()
|
||||
|
||||
if(NOT DEFINED OPENCV_DIR)
|
||||
message(FATAL_ERROR "please set OPENCV_DIR with -DOPENCV_DIR=/path/opencv")
|
||||
endif()
|
||||
|
||||
|
||||
if (WIN32)
|
||||
include_directories("${PADDLE_LIB}/paddle/fluid/inference")
|
||||
include_directories("${PADDLE_LIB}/paddle/include")
|
||||
link_directories("${PADDLE_LIB}/paddle/lib")
|
||||
link_directories("${PADDLE_LIB}/paddle/fluid/inference")
|
||||
find_package(OpenCV REQUIRED PATHS ${OPENCV_DIR}/build/ NO_DEFAULT_PATH)
|
||||
|
||||
else ()
|
||||
find_package(OpenCV REQUIRED PATHS ${OPENCV_DIR}/share/OpenCV NO_DEFAULT_PATH)
|
||||
include_directories("${PADDLE_LIB}/paddle/include")
|
||||
link_directories("${PADDLE_LIB}/paddle/lib")
|
||||
endif ()
|
||||
include_directories(${OpenCV_INCLUDE_DIRS})
|
||||
|
||||
if (WIN32)
|
||||
add_definitions("/DGOOGLE_GLOG_DLL_DECL=")
|
||||
if(WITH_MKL)
|
||||
set(FLAG_OPENMP "/openmp")
|
||||
endif()
|
||||
set(CMAKE_C_FLAGS_DEBUG "${CMAKE_C_FLAGS_DEBUG} /bigobj /MTd ${FLAG_OPENMP}")
|
||||
set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} /bigobj /MT ${FLAG_OPENMP}")
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} /bigobj /MTd ${FLAG_OPENMP}")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /bigobj /MT ${FLAG_OPENMP}")
|
||||
if (WITH_STATIC_LIB)
|
||||
safe_set_static_flag()
|
||||
add_definitions(-DSTATIC_LIB)
|
||||
endif()
|
||||
message("cmake c debug flags " ${CMAKE_C_FLAGS_DEBUG})
|
||||
message("cmake c release flags " ${CMAKE_C_FLAGS_RELEASE})
|
||||
message("cmake cxx debug flags " ${CMAKE_CXX_FLAGS_DEBUG})
|
||||
message("cmake cxx release flags " ${CMAKE_CXX_FLAGS_RELEASE})
|
||||
else()
|
||||
if(WITH_MKL)
|
||||
set(FLAG_OPENMP "-fopenmp")
|
||||
endif()
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g -o3 ${FLAG_OPENMP} -std=c++11")
|
||||
set(CMAKE_STATIC_LIBRARY_PREFIX "")
|
||||
message("cmake cxx flags" ${CMAKE_CXX_FLAGS})
|
||||
endif()
|
||||
|
||||
if (WITH_GPU)
|
||||
if (NOT DEFINED CUDA_LIB OR ${CUDA_LIB} STREQUAL "")
|
||||
message(FATAL_ERROR "please set CUDA_LIB with -DCUDA_LIB=/path/cuda-8.0/lib64")
|
||||
endif()
|
||||
if (NOT WIN32)
|
||||
if (NOT DEFINED CUDNN_LIB)
|
||||
message(FATAL_ERROR "please set CUDNN_LIB with -DCUDNN_LIB=/path/cudnn_v7.4/cuda/lib64")
|
||||
endif()
|
||||
endif(NOT WIN32)
|
||||
endif()
|
||||
|
||||
include_directories("${PADDLE_LIB}/third_party/install/protobuf/include")
|
||||
include_directories("${PADDLE_LIB}/third_party/install/glog/include")
|
||||
include_directories("${PADDLE_LIB}/third_party/install/gflags/include")
|
||||
include_directories("${PADDLE_LIB}/third_party/install/xxhash/include")
|
||||
include_directories("${PADDLE_LIB}/third_party/install/zlib/include")
|
||||
include_directories("${PADDLE_LIB}/third_party/boost")
|
||||
include_directories("${PADDLE_LIB}/third_party/eigen3")
|
||||
|
||||
include_directories("${CMAKE_SOURCE_DIR}/")
|
||||
|
||||
if (NOT WIN32)
|
||||
if (WITH_TENSORRT AND WITH_GPU)
|
||||
include_directories("${TENSORRT_DIR}/include")
|
||||
link_directories("${TENSORRT_DIR}/lib")
|
||||
endif()
|
||||
endif(NOT WIN32)
|
||||
|
||||
link_directories("${PADDLE_LIB}/third_party/install/zlib/lib")
|
||||
|
||||
link_directories("${PADDLE_LIB}/third_party/install/protobuf/lib")
|
||||
link_directories("${PADDLE_LIB}/third_party/install/glog/lib")
|
||||
link_directories("${PADDLE_LIB}/third_party/install/gflags/lib")
|
||||
link_directories("${PADDLE_LIB}/third_party/install/xxhash/lib")
|
||||
link_directories("${PADDLE_LIB}/paddle/lib")
|
||||
|
||||
|
||||
if(WITH_MKL)
|
||||
include_directories("${PADDLE_LIB}/third_party/install/mklml/include")
|
||||
if (WIN32)
|
||||
set(MATH_LIB ${PADDLE_LIB}/third_party/install/mklml/lib/mklml.lib
|
||||
${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5md.lib)
|
||||
else ()
|
||||
set(MATH_LIB ${PADDLE_LIB}/third_party/install/mklml/lib/libmklml_intel${CMAKE_SHARED_LIBRARY_SUFFIX}
|
||||
${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5${CMAKE_SHARED_LIBRARY_SUFFIX})
|
||||
execute_process(COMMAND cp -r ${PADDLE_LIB}/third_party/install/mklml/lib/libmklml_intel${CMAKE_SHARED_LIBRARY_SUFFIX} /usr/lib)
|
||||
endif ()
|
||||
set(MKLDNN_PATH "${PADDLE_LIB}/third_party/install/mkldnn")
|
||||
if(EXISTS ${MKLDNN_PATH})
|
||||
include_directories("${MKLDNN_PATH}/include")
|
||||
if (WIN32)
|
||||
set(MKLDNN_LIB ${MKLDNN_PATH}/lib/mkldnn.lib)
|
||||
else ()
|
||||
set(MKLDNN_LIB ${MKLDNN_PATH}/lib/libmkldnn.so.0)
|
||||
endif ()
|
||||
endif()
|
||||
else()
|
||||
if (WIN32)
|
||||
set(MATH_LIB ${PADDLE_LIB}/third_party/install/openblas/lib/openblas${CMAKE_STATIC_LIBRARY_SUFFIX})
|
||||
else ()
|
||||
set(MATH_LIB ${PADDLE_LIB}/third_party/install/openblas/lib/libopenblas${CMAKE_STATIC_LIBRARY_SUFFIX})
|
||||
endif ()
|
||||
endif()
|
||||
|
||||
# Note: libpaddle_inference_api.so/a must put before libpaddle_inference.so/a
|
||||
if(WITH_STATIC_LIB)
|
||||
if(WIN32)
|
||||
set(DEPS
|
||||
${PADDLE_LIB}/paddle/lib/paddle_inference${CMAKE_STATIC_LIBRARY_SUFFIX})
|
||||
else()
|
||||
set(DEPS
|
||||
${PADDLE_LIB}/paddle/lib/libpaddle_inference${CMAKE_STATIC_LIBRARY_SUFFIX})
|
||||
endif()
|
||||
else()
|
||||
if(WIN32)
|
||||
set(DEPS
|
||||
${PADDLE_LIB}/paddle/lib/paddle_inference${CMAKE_SHARED_LIBRARY_SUFFIX})
|
||||
else()
|
||||
set(DEPS
|
||||
${PADDLE_LIB}/paddle/lib/libpaddle_inference${CMAKE_SHARED_LIBRARY_SUFFIX})
|
||||
endif()
|
||||
endif(WITH_STATIC_LIB)
|
||||
|
||||
if (NOT WIN32)
|
||||
set(DEPS ${DEPS}
|
||||
${MATH_LIB} ${MKLDNN_LIB}
|
||||
glog gflags protobuf z xxhash
|
||||
)
|
||||
if(EXISTS "${PADDLE_LIB}/third_party/install/snappystream/lib")
|
||||
set(DEPS ${DEPS} snappystream)
|
||||
endif()
|
||||
if (EXISTS "${PADDLE_LIB}/third_party/install/snappy/lib")
|
||||
set(DEPS ${DEPS} snappy)
|
||||
endif()
|
||||
else()
|
||||
set(DEPS ${DEPS}
|
||||
${MATH_LIB} ${MKLDNN_LIB}
|
||||
glog gflags_static libprotobuf xxhash)
|
||||
set(DEPS ${DEPS} libcmt shlwapi)
|
||||
if (EXISTS "${PADDLE_LIB}/third_party/install/snappy/lib")
|
||||
set(DEPS ${DEPS} snappy)
|
||||
endif()
|
||||
if(EXISTS "${PADDLE_LIB}/third_party/install/snappystream/lib")
|
||||
set(DEPS ${DEPS} snappystream)
|
||||
endif()
|
||||
endif(NOT WIN32)
|
||||
|
||||
|
||||
if(WITH_GPU)
|
||||
if(NOT WIN32)
|
||||
if (WITH_TENSORRT)
|
||||
set(DEPS ${DEPS} ${TENSORRT_DIR}/lib/libnvinfer${CMAKE_SHARED_LIBRARY_SUFFIX})
|
||||
set(DEPS ${DEPS} ${TENSORRT_DIR}/lib/libnvinfer_plugin${CMAKE_SHARED_LIBRARY_SUFFIX})
|
||||
endif()
|
||||
set(DEPS ${DEPS} ${CUDA_LIB}/libcudart${CMAKE_SHARED_LIBRARY_SUFFIX})
|
||||
set(DEPS ${DEPS} ${CUDNN_LIB}/libcudnn${CMAKE_SHARED_LIBRARY_SUFFIX})
|
||||
else()
|
||||
set(DEPS ${DEPS} ${CUDA_LIB}/cudart${CMAKE_STATIC_LIBRARY_SUFFIX} )
|
||||
set(DEPS ${DEPS} ${CUDA_LIB}/cublas${CMAKE_STATIC_LIBRARY_SUFFIX} )
|
||||
set(DEPS ${DEPS} ${CUDNN_LIB}/cudnn${CMAKE_STATIC_LIBRARY_SUFFIX})
|
||||
endif()
|
||||
endif()
|
||||
|
||||
|
||||
if (NOT WIN32)
|
||||
set(EXTERNAL_LIB "-ldl -lrt -lgomp -lz -lm -lpthread")
|
||||
set(DEPS ${DEPS} ${EXTERNAL_LIB})
|
||||
endif()
|
||||
|
||||
set(DEPS ${DEPS} ${OpenCV_LIBS})
|
||||
|
||||
AUX_SOURCE_DIRECTORY(./src_det SRCS)
|
||||
add_executable(${DEMO_NAME} ${SRCS})
|
||||
|
||||
target_link_libraries(${DEMO_NAME} ${DEPS})
|
||||
|
||||
if (WIN32 AND WITH_MKL)
|
||||
add_custom_command(TARGET ${DEMO_NAME} POST_BUILD
|
||||
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mklml/lib/mklml.dll ./mklml.dll
|
||||
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5md.dll ./libiomp5md.dll
|
||||
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mkldnn/lib/mkldnn.dll ./mkldnn.dll
|
||||
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mklml/lib/mklml.dll ./release/mklml.dll
|
||||
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5md.dll ./release/libiomp5md.dll
|
||||
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mkldnn/lib/mkldnn.dll ./release/mkldnn.dll
|
||||
)
|
||||
endif()
|
|
@ -0,0 +1,225 @@
|
|||
project(ocr_rec CXX C)
|
||||
|
||||
option(WITH_MKL "Compile demo with MKL/OpenBlas support, default use MKL." ON)
|
||||
option(WITH_GPU "Compile demo with GPU/CPU, default use CPU." OFF)
|
||||
option(WITH_STATIC_LIB "Compile demo with static/shared library, default use static." ON)
|
||||
option(WITH_TENSORRT "Compile demo with TensorRT." OFF)
|
||||
|
||||
SET(PADDLE_LIB "" CACHE PATH "Location of libraries")
|
||||
SET(OPENCV_DIR "" CACHE PATH "Location of libraries")
|
||||
SET(CUDA_LIB "" CACHE PATH "Location of libraries")
|
||||
SET(CUDNN_LIB "" CACHE PATH "Location of libraries")
|
||||
SET(TENSORRT_DIR "" CACHE PATH "Compile demo with TensorRT")
|
||||
|
||||
set(DEMO_NAME "ocr_rec")
|
||||
|
||||
|
||||
macro(safe_set_static_flag)
|
||||
foreach(flag_var
|
||||
CMAKE_CXX_FLAGS CMAKE_CXX_FLAGS_DEBUG CMAKE_CXX_FLAGS_RELEASE
|
||||
CMAKE_CXX_FLAGS_MINSIZEREL CMAKE_CXX_FLAGS_RELWITHDEBINFO)
|
||||
if(${flag_var} MATCHES "/MD")
|
||||
string(REGEX REPLACE "/MD" "/MT" ${flag_var} "${${flag_var}}")
|
||||
endif(${flag_var} MATCHES "/MD")
|
||||
endforeach(flag_var)
|
||||
endmacro()
|
||||
|
||||
if (WITH_MKL)
|
||||
ADD_DEFINITIONS(-DUSE_MKL)
|
||||
endif()
|
||||
|
||||
if(NOT DEFINED PADDLE_LIB)
|
||||
message(FATAL_ERROR "please set PADDLE_LIB with -DPADDLE_LIB=/path/paddle/lib")
|
||||
endif()
|
||||
|
||||
if(NOT DEFINED OPENCV_DIR)
|
||||
message(FATAL_ERROR "please set OPENCV_DIR with -DOPENCV_DIR=/path/opencv")
|
||||
endif()
|
||||
|
||||
|
||||
if (WIN32)
|
||||
include_directories("${PADDLE_LIB}/paddle/fluid/inference")
|
||||
include_directories("${PADDLE_LIB}/paddle/include")
|
||||
link_directories("${PADDLE_LIB}/paddle/lib")
|
||||
link_directories("${PADDLE_LIB}/paddle/fluid/inference")
|
||||
find_package(OpenCV REQUIRED PATHS ${OPENCV_DIR}/build/ NO_DEFAULT_PATH)
|
||||
|
||||
else ()
|
||||
find_package(OpenCV REQUIRED PATHS ${OPENCV_DIR}/share/OpenCV NO_DEFAULT_PATH)
|
||||
include_directories("${PADDLE_LIB}/paddle/include")
|
||||
link_directories("${PADDLE_LIB}/paddle/lib")
|
||||
endif ()
|
||||
include_directories(${OpenCV_INCLUDE_DIRS})
|
||||
|
||||
if (WIN32)
|
||||
add_definitions("/DGOOGLE_GLOG_DLL_DECL=")
|
||||
if(WITH_MKL)
|
||||
set(FLAG_OPENMP "/openmp")
|
||||
endif()
|
||||
set(CMAKE_C_FLAGS_DEBUG "${CMAKE_C_FLAGS_DEBUG} /bigobj /MTd ${FLAG_OPENMP}")
|
||||
set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} /bigobj /MT ${FLAG_OPENMP}")
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} /bigobj /MTd ${FLAG_OPENMP}")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /bigobj /MT ${FLAG_OPENMP}")
|
||||
if (WITH_STATIC_LIB)
|
||||
safe_set_static_flag()
|
||||
add_definitions(-DSTATIC_LIB)
|
||||
endif()
|
||||
message("cmake c debug flags " ${CMAKE_C_FLAGS_DEBUG})
|
||||
message("cmake c release flags " ${CMAKE_C_FLAGS_RELEASE})
|
||||
message("cmake cxx debug flags " ${CMAKE_CXX_FLAGS_DEBUG})
|
||||
message("cmake cxx release flags " ${CMAKE_CXX_FLAGS_RELEASE})
|
||||
else()
|
||||
if(WITH_MKL)
|
||||
set(FLAG_OPENMP "-fopenmp")
|
||||
endif()
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g -o3 ${FLAG_OPENMP} -std=c++11")
|
||||
set(CMAKE_STATIC_LIBRARY_PREFIX "")
|
||||
message("cmake cxx flags" ${CMAKE_CXX_FLAGS})
|
||||
endif()
|
||||
|
||||
if (WITH_GPU)
|
||||
if (NOT DEFINED CUDA_LIB OR ${CUDA_LIB} STREQUAL "")
|
||||
message(FATAL_ERROR "please set CUDA_LIB with -DCUDA_LIB=/path/cuda-8.0/lib64")
|
||||
endif()
|
||||
if (NOT WIN32)
|
||||
if (NOT DEFINED CUDNN_LIB)
|
||||
message(FATAL_ERROR "please set CUDNN_LIB with -DCUDNN_LIB=/path/cudnn_v7.4/cuda/lib64")
|
||||
endif()
|
||||
endif(NOT WIN32)
|
||||
endif()
|
||||
|
||||
include_directories("${PADDLE_LIB}/third_party/install/protobuf/include")
|
||||
include_directories("${PADDLE_LIB}/third_party/install/glog/include")
|
||||
include_directories("${PADDLE_LIB}/third_party/install/gflags/include")
|
||||
include_directories("${PADDLE_LIB}/third_party/install/xxhash/include")
|
||||
include_directories("${PADDLE_LIB}/third_party/install/zlib/include")
|
||||
include_directories("${PADDLE_LIB}/third_party/boost")
|
||||
include_directories("${PADDLE_LIB}/third_party/eigen3")
|
||||
|
||||
include_directories("${CMAKE_SOURCE_DIR}/")
|
||||
|
||||
if (NOT WIN32)
|
||||
if (WITH_TENSORRT AND WITH_GPU)
|
||||
include_directories("${TENSORRT_DIR}/include")
|
||||
link_directories("${TENSORRT_DIR}/lib")
|
||||
endif()
|
||||
endif(NOT WIN32)
|
||||
|
||||
link_directories("${PADDLE_LIB}/third_party/install/zlib/lib")
|
||||
|
||||
link_directories("${PADDLE_LIB}/third_party/install/protobuf/lib")
|
||||
link_directories("${PADDLE_LIB}/third_party/install/glog/lib")
|
||||
link_directories("${PADDLE_LIB}/third_party/install/gflags/lib")
|
||||
link_directories("${PADDLE_LIB}/third_party/install/xxhash/lib")
|
||||
link_directories("${PADDLE_LIB}/paddle/lib")
|
||||
|
||||
|
||||
if(WITH_MKL)
|
||||
include_directories("${PADDLE_LIB}/third_party/install/mklml/include")
|
||||
if (WIN32)
|
||||
set(MATH_LIB ${PADDLE_LIB}/third_party/install/mklml/lib/mklml.lib
|
||||
${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5md.lib)
|
||||
else ()
|
||||
set(MATH_LIB ${PADDLE_LIB}/third_party/install/mklml/lib/libmklml_intel${CMAKE_SHARED_LIBRARY_SUFFIX}
|
||||
${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5${CMAKE_SHARED_LIBRARY_SUFFIX})
|
||||
execute_process(COMMAND cp -r ${PADDLE_LIB}/third_party/install/mklml/lib/libmklml_intel${CMAKE_SHARED_LIBRARY_SUFFIX} /usr/lib)
|
||||
endif ()
|
||||
set(MKLDNN_PATH "${PADDLE_LIB}/third_party/install/mkldnn")
|
||||
if(EXISTS ${MKLDNN_PATH})
|
||||
include_directories("${MKLDNN_PATH}/include")
|
||||
if (WIN32)
|
||||
set(MKLDNN_LIB ${MKLDNN_PATH}/lib/mkldnn.lib)
|
||||
else ()
|
||||
set(MKLDNN_LIB ${MKLDNN_PATH}/lib/libmkldnn.so.0)
|
||||
endif ()
|
||||
endif()
|
||||
else()
|
||||
if (WIN32)
|
||||
set(MATH_LIB ${PADDLE_LIB}/third_party/install/openblas/lib/openblas${CMAKE_STATIC_LIBRARY_SUFFIX})
|
||||
else ()
|
||||
set(MATH_LIB ${PADDLE_LIB}/third_party/install/openblas/lib/libopenblas${CMAKE_STATIC_LIBRARY_SUFFIX})
|
||||
endif ()
|
||||
endif()
|
||||
|
||||
# Note: libpaddle_inference_api.so/a must put before libpaddle_inference.so/a
|
||||
if(WITH_STATIC_LIB)
|
||||
if(WIN32)
|
||||
set(DEPS
|
||||
${PADDLE_LIB}/paddle/lib/paddle_inference${CMAKE_STATIC_LIBRARY_SUFFIX})
|
||||
else()
|
||||
set(DEPS
|
||||
${PADDLE_LIB}/paddle/lib/libpaddle_inference${CMAKE_STATIC_LIBRARY_SUFFIX})
|
||||
endif()
|
||||
else()
|
||||
if(WIN32)
|
||||
set(DEPS
|
||||
${PADDLE_LIB}/paddle/lib/paddle_inference${CMAKE_SHARED_LIBRARY_SUFFIX})
|
||||
else()
|
||||
set(DEPS
|
||||
${PADDLE_LIB}/paddle/lib/libpaddle_inference${CMAKE_SHARED_LIBRARY_SUFFIX})
|
||||
endif()
|
||||
endif(WITH_STATIC_LIB)
|
||||
|
||||
if (NOT WIN32)
|
||||
set(DEPS ${DEPS}
|
||||
${MATH_LIB} ${MKLDNN_LIB}
|
||||
glog gflags protobuf z xxhash
|
||||
)
|
||||
if(EXISTS "${PADDLE_LIB}/third_party/install/snappystream/lib")
|
||||
set(DEPS ${DEPS} snappystream)
|
||||
endif()
|
||||
if (EXISTS "${PADDLE_LIB}/third_party/install/snappy/lib")
|
||||
set(DEPS ${DEPS} snappy)
|
||||
endif()
|
||||
else()
|
||||
set(DEPS ${DEPS}
|
||||
${MATH_LIB} ${MKLDNN_LIB}
|
||||
glog gflags_static libprotobuf xxhash)
|
||||
set(DEPS ${DEPS} libcmt shlwapi)
|
||||
if (EXISTS "${PADDLE_LIB}/third_party/install/snappy/lib")
|
||||
set(DEPS ${DEPS} snappy)
|
||||
endif()
|
||||
if(EXISTS "${PADDLE_LIB}/third_party/install/snappystream/lib")
|
||||
set(DEPS ${DEPS} snappystream)
|
||||
endif()
|
||||
endif(NOT WIN32)
|
||||
|
||||
|
||||
if(WITH_GPU)
|
||||
if(NOT WIN32)
|
||||
if (WITH_TENSORRT)
|
||||
set(DEPS ${DEPS} ${TENSORRT_DIR}/lib/libnvinfer${CMAKE_SHARED_LIBRARY_SUFFIX})
|
||||
set(DEPS ${DEPS} ${TENSORRT_DIR}/lib/libnvinfer_plugin${CMAKE_SHARED_LIBRARY_SUFFIX})
|
||||
endif()
|
||||
set(DEPS ${DEPS} ${CUDA_LIB}/libcudart${CMAKE_SHARED_LIBRARY_SUFFIX})
|
||||
set(DEPS ${DEPS} ${CUDNN_LIB}/libcudnn${CMAKE_SHARED_LIBRARY_SUFFIX})
|
||||
else()
|
||||
set(DEPS ${DEPS} ${CUDA_LIB}/cudart${CMAKE_STATIC_LIBRARY_SUFFIX} )
|
||||
set(DEPS ${DEPS} ${CUDA_LIB}/cublas${CMAKE_STATIC_LIBRARY_SUFFIX} )
|
||||
set(DEPS ${DEPS} ${CUDNN_LIB}/cudnn${CMAKE_STATIC_LIBRARY_SUFFIX})
|
||||
endif()
|
||||
endif()
|
||||
|
||||
|
||||
if (NOT WIN32)
|
||||
set(EXTERNAL_LIB "-ldl -lrt -lgomp -lz -lm -lpthread")
|
||||
set(DEPS ${DEPS} ${EXTERNAL_LIB})
|
||||
endif()
|
||||
|
||||
set(DEPS ${DEPS} ${OpenCV_LIBS})
|
||||
|
||||
AUX_SOURCE_DIRECTORY(./src_rec SRCS)
|
||||
add_executable(${DEMO_NAME} ${SRCS})
|
||||
|
||||
target_link_libraries(${DEMO_NAME} ${DEPS})
|
||||
|
||||
if (WIN32 AND WITH_MKL)
|
||||
add_custom_command(TARGET ${DEMO_NAME} POST_BUILD
|
||||
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mklml/lib/mklml.dll ./mklml.dll
|
||||
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5md.dll ./libiomp5md.dll
|
||||
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mkldnn/lib/mkldnn.dll ./mkldnn.dll
|
||||
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mklml/lib/mklml.dll ./release/mklml.dll
|
||||
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5md.dll ./release/libiomp5md.dll
|
||||
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mkldnn/lib/mkldnn.dll ./release/mkldnn.dll
|
||||
)
|
||||
endif()
|
|
@ -0,0 +1,225 @@
|
|||
project(ocr_system CXX C)
|
||||
|
||||
option(WITH_MKL "Compile demo with MKL/OpenBlas support, default use MKL." ON)
|
||||
option(WITH_GPU "Compile demo with GPU/CPU, default use CPU." OFF)
|
||||
option(WITH_STATIC_LIB "Compile demo with static/shared library, default use static." ON)
|
||||
option(WITH_TENSORRT "Compile demo with TensorRT." OFF)
|
||||
|
||||
SET(PADDLE_LIB "" CACHE PATH "Location of libraries")
|
||||
SET(OPENCV_DIR "" CACHE PATH "Location of libraries")
|
||||
SET(CUDA_LIB "" CACHE PATH "Location of libraries")
|
||||
SET(CUDNN_LIB "" CACHE PATH "Location of libraries")
|
||||
SET(TENSORRT_DIR "" CACHE PATH "Compile demo with TensorRT")
|
||||
|
||||
set(DEMO_NAME "ocr_system")
|
||||
|
||||
|
||||
macro(safe_set_static_flag)
|
||||
foreach(flag_var
|
||||
CMAKE_CXX_FLAGS CMAKE_CXX_FLAGS_DEBUG CMAKE_CXX_FLAGS_RELEASE
|
||||
CMAKE_CXX_FLAGS_MINSIZEREL CMAKE_CXX_FLAGS_RELWITHDEBINFO)
|
||||
if(${flag_var} MATCHES "/MD")
|
||||
string(REGEX REPLACE "/MD" "/MT" ${flag_var} "${${flag_var}}")
|
||||
endif(${flag_var} MATCHES "/MD")
|
||||
endforeach(flag_var)
|
||||
endmacro()
|
||||
|
||||
if (WITH_MKL)
|
||||
ADD_DEFINITIONS(-DUSE_MKL)
|
||||
endif()
|
||||
|
||||
if(NOT DEFINED PADDLE_LIB)
|
||||
message(FATAL_ERROR "please set PADDLE_LIB with -DPADDLE_LIB=/path/paddle/lib")
|
||||
endif()
|
||||
|
||||
if(NOT DEFINED OPENCV_DIR)
|
||||
message(FATAL_ERROR "please set OPENCV_DIR with -DOPENCV_DIR=/path/opencv")
|
||||
endif()
|
||||
|
||||
|
||||
if (WIN32)
|
||||
include_directories("${PADDLE_LIB}/paddle/fluid/inference")
|
||||
include_directories("${PADDLE_LIB}/paddle/include")
|
||||
link_directories("${PADDLE_LIB}/paddle/lib")
|
||||
link_directories("${PADDLE_LIB}/paddle/fluid/inference")
|
||||
find_package(OpenCV REQUIRED PATHS ${OPENCV_DIR}/build/ NO_DEFAULT_PATH)
|
||||
|
||||
else ()
|
||||
find_package(OpenCV REQUIRED PATHS ${OPENCV_DIR}/share/OpenCV NO_DEFAULT_PATH)
|
||||
include_directories("${PADDLE_LIB}/paddle/include")
|
||||
link_directories("${PADDLE_LIB}/paddle/lib")
|
||||
endif ()
|
||||
include_directories(${OpenCV_INCLUDE_DIRS})
|
||||
|
||||
if (WIN32)
|
||||
add_definitions("/DGOOGLE_GLOG_DLL_DECL=")
|
||||
if(WITH_MKL)
|
||||
set(FLAG_OPENMP "/openmp")
|
||||
endif()
|
||||
set(CMAKE_C_FLAGS_DEBUG "${CMAKE_C_FLAGS_DEBUG} /bigobj /MTd ${FLAG_OPENMP}")
|
||||
set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} /bigobj /MT ${FLAG_OPENMP}")
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} /bigobj /MTd ${FLAG_OPENMP}")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /bigobj /MT ${FLAG_OPENMP}")
|
||||
if (WITH_STATIC_LIB)
|
||||
safe_set_static_flag()
|
||||
add_definitions(-DSTATIC_LIB)
|
||||
endif()
|
||||
message("cmake c debug flags " ${CMAKE_C_FLAGS_DEBUG})
|
||||
message("cmake c release flags " ${CMAKE_C_FLAGS_RELEASE})
|
||||
message("cmake cxx debug flags " ${CMAKE_CXX_FLAGS_DEBUG})
|
||||
message("cmake cxx release flags " ${CMAKE_CXX_FLAGS_RELEASE})
|
||||
else()
|
||||
if(WITH_MKL)
|
||||
set(FLAG_OPENMP "-fopenmp")
|
||||
endif()
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g -o3 ${FLAG_OPENMP} -std=c++11")
|
||||
set(CMAKE_STATIC_LIBRARY_PREFIX "")
|
||||
message("cmake cxx flags" ${CMAKE_CXX_FLAGS})
|
||||
endif()
|
||||
|
||||
if (WITH_GPU)
|
||||
if (NOT DEFINED CUDA_LIB OR ${CUDA_LIB} STREQUAL "")
|
||||
message(FATAL_ERROR "please set CUDA_LIB with -DCUDA_LIB=/path/cuda-8.0/lib64")
|
||||
endif()
|
||||
if (NOT WIN32)
|
||||
if (NOT DEFINED CUDNN_LIB)
|
||||
message(FATAL_ERROR "please set CUDNN_LIB with -DCUDNN_LIB=/path/cudnn_v7.4/cuda/lib64")
|
||||
endif()
|
||||
endif(NOT WIN32)
|
||||
endif()
|
||||
|
||||
include_directories("${PADDLE_LIB}/third_party/install/protobuf/include")
|
||||
include_directories("${PADDLE_LIB}/third_party/install/glog/include")
|
||||
include_directories("${PADDLE_LIB}/third_party/install/gflags/include")
|
||||
include_directories("${PADDLE_LIB}/third_party/install/xxhash/include")
|
||||
include_directories("${PADDLE_LIB}/third_party/install/zlib/include")
|
||||
include_directories("${PADDLE_LIB}/third_party/boost")
|
||||
include_directories("${PADDLE_LIB}/third_party/eigen3")
|
||||
|
||||
include_directories("${CMAKE_SOURCE_DIR}/")
|
||||
|
||||
if (NOT WIN32)
|
||||
if (WITH_TENSORRT AND WITH_GPU)
|
||||
include_directories("${TENSORRT_DIR}/include")
|
||||
link_directories("${TENSORRT_DIR}/lib")
|
||||
endif()
|
||||
endif(NOT WIN32)
|
||||
|
||||
link_directories("${PADDLE_LIB}/third_party/install/zlib/lib")
|
||||
|
||||
link_directories("${PADDLE_LIB}/third_party/install/protobuf/lib")
|
||||
link_directories("${PADDLE_LIB}/third_party/install/glog/lib")
|
||||
link_directories("${PADDLE_LIB}/third_party/install/gflags/lib")
|
||||
link_directories("${PADDLE_LIB}/third_party/install/xxhash/lib")
|
||||
link_directories("${PADDLE_LIB}/paddle/lib")
|
||||
|
||||
|
||||
if(WITH_MKL)
|
||||
include_directories("${PADDLE_LIB}/third_party/install/mklml/include")
|
||||
if (WIN32)
|
||||
set(MATH_LIB ${PADDLE_LIB}/third_party/install/mklml/lib/mklml.lib
|
||||
${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5md.lib)
|
||||
else ()
|
||||
set(MATH_LIB ${PADDLE_LIB}/third_party/install/mklml/lib/libmklml_intel${CMAKE_SHARED_LIBRARY_SUFFIX}
|
||||
${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5${CMAKE_SHARED_LIBRARY_SUFFIX})
|
||||
execute_process(COMMAND cp -r ${PADDLE_LIB}/third_party/install/mklml/lib/libmklml_intel${CMAKE_SHARED_LIBRARY_SUFFIX} /usr/lib)
|
||||
endif ()
|
||||
set(MKLDNN_PATH "${PADDLE_LIB}/third_party/install/mkldnn")
|
||||
if(EXISTS ${MKLDNN_PATH})
|
||||
include_directories("${MKLDNN_PATH}/include")
|
||||
if (WIN32)
|
||||
set(MKLDNN_LIB ${MKLDNN_PATH}/lib/mkldnn.lib)
|
||||
else ()
|
||||
set(MKLDNN_LIB ${MKLDNN_PATH}/lib/libmkldnn.so.0)
|
||||
endif ()
|
||||
endif()
|
||||
else()
|
||||
if (WIN32)
|
||||
set(MATH_LIB ${PADDLE_LIB}/third_party/install/openblas/lib/openblas${CMAKE_STATIC_LIBRARY_SUFFIX})
|
||||
else ()
|
||||
set(MATH_LIB ${PADDLE_LIB}/third_party/install/openblas/lib/libopenblas${CMAKE_STATIC_LIBRARY_SUFFIX})
|
||||
endif ()
|
||||
endif()
|
||||
|
||||
# Note: libpaddle_inference_api.so/a must put before libpaddle_inference.so/a
|
||||
if(WITH_STATIC_LIB)
|
||||
if(WIN32)
|
||||
set(DEPS
|
||||
${PADDLE_LIB}/paddle/lib/paddle_inference${CMAKE_STATIC_LIBRARY_SUFFIX})
|
||||
else()
|
||||
set(DEPS
|
||||
${PADDLE_LIB}/paddle/lib/libpaddle_inference${CMAKE_STATIC_LIBRARY_SUFFIX})
|
||||
endif()
|
||||
else()
|
||||
if(WIN32)
|
||||
set(DEPS
|
||||
${PADDLE_LIB}/paddle/lib/paddle_inference${CMAKE_SHARED_LIBRARY_SUFFIX})
|
||||
else()
|
||||
set(DEPS
|
||||
${PADDLE_LIB}/paddle/lib/libpaddle_inference${CMAKE_SHARED_LIBRARY_SUFFIX})
|
||||
endif()
|
||||
endif(WITH_STATIC_LIB)
|
||||
|
||||
if (NOT WIN32)
|
||||
set(DEPS ${DEPS}
|
||||
${MATH_LIB} ${MKLDNN_LIB}
|
||||
glog gflags protobuf z xxhash
|
||||
)
|
||||
if(EXISTS "${PADDLE_LIB}/third_party/install/snappystream/lib")
|
||||
set(DEPS ${DEPS} snappystream)
|
||||
endif()
|
||||
if (EXISTS "${PADDLE_LIB}/third_party/install/snappy/lib")
|
||||
set(DEPS ${DEPS} snappy)
|
||||
endif()
|
||||
else()
|
||||
set(DEPS ${DEPS}
|
||||
${MATH_LIB} ${MKLDNN_LIB}
|
||||
glog gflags_static libprotobuf xxhash)
|
||||
set(DEPS ${DEPS} libcmt shlwapi)
|
||||
if (EXISTS "${PADDLE_LIB}/third_party/install/snappy/lib")
|
||||
set(DEPS ${DEPS} snappy)
|
||||
endif()
|
||||
if(EXISTS "${PADDLE_LIB}/third_party/install/snappystream/lib")
|
||||
set(DEPS ${DEPS} snappystream)
|
||||
endif()
|
||||
endif(NOT WIN32)
|
||||
|
||||
|
||||
if(WITH_GPU)
|
||||
if(NOT WIN32)
|
||||
if (WITH_TENSORRT)
|
||||
set(DEPS ${DEPS} ${TENSORRT_DIR}/lib/libnvinfer${CMAKE_SHARED_LIBRARY_SUFFIX})
|
||||
set(DEPS ${DEPS} ${TENSORRT_DIR}/lib/libnvinfer_plugin${CMAKE_SHARED_LIBRARY_SUFFIX})
|
||||
endif()
|
||||
set(DEPS ${DEPS} ${CUDA_LIB}/libcudart${CMAKE_SHARED_LIBRARY_SUFFIX})
|
||||
set(DEPS ${DEPS} ${CUDNN_LIB}/libcudnn${CMAKE_SHARED_LIBRARY_SUFFIX})
|
||||
else()
|
||||
set(DEPS ${DEPS} ${CUDA_LIB}/cudart${CMAKE_STATIC_LIBRARY_SUFFIX} )
|
||||
set(DEPS ${DEPS} ${CUDA_LIB}/cublas${CMAKE_STATIC_LIBRARY_SUFFIX} )
|
||||
set(DEPS ${DEPS} ${CUDNN_LIB}/cudnn${CMAKE_STATIC_LIBRARY_SUFFIX})
|
||||
endif()
|
||||
endif()
|
||||
|
||||
|
||||
if (NOT WIN32)
|
||||
set(EXTERNAL_LIB "-ldl -lrt -lgomp -lz -lm -lpthread")
|
||||
set(DEPS ${DEPS} ${EXTERNAL_LIB})
|
||||
endif()
|
||||
|
||||
set(DEPS ${DEPS} ${OpenCV_LIBS})
|
||||
|
||||
AUX_SOURCE_DIRECTORY(./src_system SRCS)
|
||||
add_executable(${DEMO_NAME} ${SRCS})
|
||||
|
||||
target_link_libraries(${DEMO_NAME} ${DEPS})
|
||||
|
||||
if (WIN32 AND WITH_MKL)
|
||||
add_custom_command(TARGET ${DEMO_NAME} POST_BUILD
|
||||
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mklml/lib/mklml.dll ./mklml.dll
|
||||
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5md.dll ./libiomp5md.dll
|
||||
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mkldnn/lib/mkldnn.dll ./mkldnn.dll
|
||||
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mklml/lib/mklml.dll ./release/mklml.dll
|
||||
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5md.dll ./release/libiomp5md.dll
|
||||
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mkldnn/lib/mkldnn.dll ./release/mkldnn.dll
|
||||
)
|
||||
endif()
|
|
@ -1,123 +0,0 @@
|
|||
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <map>
|
||||
#include <ostream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "include/utility.h"
|
||||
|
||||
namespace PaddleOCR {
|
||||
|
||||
class OCRConfig {
|
||||
public:
|
||||
explicit OCRConfig(const std::string &config_file) {
|
||||
config_map_ = LoadConfig(config_file);
|
||||
|
||||
this->use_gpu = bool(stoi(config_map_["use_gpu"]));
|
||||
|
||||
this->gpu_id = stoi(config_map_["gpu_id"]);
|
||||
|
||||
this->gpu_mem = stoi(config_map_["gpu_mem"]);
|
||||
|
||||
this->cpu_math_library_num_threads =
|
||||
stoi(config_map_["cpu_math_library_num_threads"]);
|
||||
|
||||
this->use_mkldnn = bool(stoi(config_map_["use_mkldnn"]));
|
||||
|
||||
this->max_side_len = stoi(config_map_["max_side_len"]);
|
||||
|
||||
this->det_db_thresh = stod(config_map_["det_db_thresh"]);
|
||||
|
||||
this->det_db_box_thresh = stod(config_map_["det_db_box_thresh"]);
|
||||
|
||||
this->det_db_unclip_ratio = stod(config_map_["det_db_unclip_ratio"]);
|
||||
|
||||
this->use_polygon_score = bool(stoi(config_map_["use_polygon_score"]));
|
||||
|
||||
this->det_model_dir.assign(config_map_["det_model_dir"]);
|
||||
|
||||
this->rec_model_dir.assign(config_map_["rec_model_dir"]);
|
||||
|
||||
this->char_list_file.assign(config_map_["char_list_file"]);
|
||||
|
||||
this->use_angle_cls = bool(stoi(config_map_["use_angle_cls"]));
|
||||
|
||||
this->cls_model_dir.assign(config_map_["cls_model_dir"]);
|
||||
|
||||
this->cls_thresh = stod(config_map_["cls_thresh"]);
|
||||
|
||||
this->visualize = bool(stoi(config_map_["visualize"]));
|
||||
|
||||
this->use_tensorrt = bool(stoi(config_map_["use_tensorrt"]));
|
||||
|
||||
this->use_fp16 = bool(stod(config_map_["use_fp16"]));
|
||||
}
|
||||
|
||||
bool use_gpu = false;
|
||||
|
||||
int gpu_id = 0;
|
||||
|
||||
int gpu_mem = 4000;
|
||||
|
||||
int cpu_math_library_num_threads = 1;
|
||||
|
||||
bool use_mkldnn = false;
|
||||
|
||||
int max_side_len = 960;
|
||||
|
||||
double det_db_thresh = 0.3;
|
||||
|
||||
double det_db_box_thresh = 0.5;
|
||||
|
||||
double det_db_unclip_ratio = 2.0;
|
||||
|
||||
bool use_polygon_score = false;
|
||||
|
||||
std::string det_model_dir;
|
||||
|
||||
std::string rec_model_dir;
|
||||
|
||||
bool use_angle_cls;
|
||||
|
||||
std::string char_list_file;
|
||||
|
||||
std::string cls_model_dir;
|
||||
|
||||
double cls_thresh;
|
||||
|
||||
bool visualize = true;
|
||||
|
||||
bool use_tensorrt = false;
|
||||
|
||||
bool use_fp16 = false;
|
||||
|
||||
void PrintConfigInfo();
|
||||
|
||||
private:
|
||||
// Load configuration
|
||||
std::map<std::string, std::string> LoadConfig(const std::string &config_file);
|
||||
|
||||
std::vector<std::string> split(const std::string &str,
|
||||
const std::string &delim);
|
||||
|
||||
std::map<std::string, std::string> config_map_;
|
||||
};
|
||||
|
||||
} // namespace PaddleOCR
|
|
@ -38,15 +38,20 @@ namespace PaddleOCR {
|
|||
|
||||
class DBDetector {
|
||||
public:
|
||||
explicit DBDetector(const std::string &model_dir, const bool &use_gpu,
|
||||
const int &gpu_id, const int &gpu_mem,
|
||||
const int &cpu_math_library_num_threads,
|
||||
const bool &use_mkldnn, const int &max_side_len,
|
||||
const double &det_db_thresh,
|
||||
const double &det_db_box_thresh,
|
||||
const double &det_db_unclip_ratio,
|
||||
const bool &use_polygon_score, const bool &visualize,
|
||||
const bool &use_tensorrt, const bool &use_fp16) {
|
||||
explicit DBDetector(const std::string &model_dir,
|
||||
const bool &use_gpu=false,
|
||||
const int &gpu_id=0,
|
||||
const int &gpu_mem=4000,
|
||||
const int &cpu_math_library_num_threads=1,
|
||||
const bool &use_mkldnn=false,
|
||||
const int &max_side_len=960,
|
||||
const double &det_db_thresh=0.3,
|
||||
const double &det_db_box_thresh=0.5,
|
||||
const double &det_db_unclip_ratio=2.0,
|
||||
const bool &use_polygon_score=false,
|
||||
const bool &visualize=false,
|
||||
const bool &use_tensorrt=false,
|
||||
const bool &use_fp16=false) {
|
||||
this->use_gpu_ = use_gpu;
|
||||
this->gpu_id_ = gpu_id;
|
||||
this->gpu_mem_ = gpu_mem;
|
||||
|
|
|
@ -62,8 +62,7 @@ public:
|
|||
// Load Paddle inference model
|
||||
void LoadModel(const std::string &model_dir);
|
||||
|
||||
void Run(std::vector<std::vector<std::vector<int>>> boxes, cv::Mat &img,
|
||||
Classifier *cls);
|
||||
void Run(cv::Mat &img);
|
||||
|
||||
private:
|
||||
std::shared_ptr<Predictor> predictor_;
|
||||
|
|
|
@ -156,80 +156,87 @@ inference/
|
|||
|
||||
|
||||
```shell
|
||||
sh tools/build.sh
|
||||
sh tools/build.sh MODE(['det', 'rec', 'system'])
|
||||
```
|
||||
其中`MODE`表示demo功能,支持3种参数,**按需选择一种参数即可**,相应解释如下:
|
||||
```shell
|
||||
sh tools/build.sh det # 编译检测demo
|
||||
sh tools/build.sh rec # 编译识别demo
|
||||
sh tools/build.sh system # 编译串联demo(包括方向分类器)
|
||||
```
|
||||
|
||||
具体地,`tools/build.sh`中内容如下。
|
||||
此外,需要修改`tools/build.sh`中环境路径,相关内容如下:
|
||||
|
||||
```shell
|
||||
OPENCV_DIR=your_opencv_dir
|
||||
LIB_DIR=your_paddle_inference_dir
|
||||
CUDA_LIB_DIR=your_cuda_lib_dir
|
||||
CUDNN_LIB_DIR=/your_cudnn_lib_dir
|
||||
|
||||
BUILD_DIR=build
|
||||
rm -rf ${BUILD_DIR}
|
||||
mkdir ${BUILD_DIR}
|
||||
cd ${BUILD_DIR}
|
||||
cmake .. \
|
||||
-DPADDLE_LIB=${LIB_DIR} \
|
||||
-DWITH_MKL=ON \
|
||||
-DDEMO_NAME=ocr_system \
|
||||
-DWITH_GPU=OFF \
|
||||
-DWITH_STATIC_LIB=OFF \
|
||||
-DUSE_TENSORRT=OFF \
|
||||
-DOPENCV_DIR=${OPENCV_DIR} \
|
||||
-DCUDNN_LIB=${CUDNN_LIB_DIR} \
|
||||
-DCUDA_LIB=${CUDA_LIB_DIR} \
|
||||
|
||||
make -j
|
||||
```
|
||||
|
||||
`OPENCV_DIR`为opencv编译安装的地址;`LIB_DIR`为下载(`paddle_inference`文件夹)或者编译生成的Paddle预测库地址(`build/paddle_inference_install_dir`文件夹);`CUDA_LIB_DIR`为cuda库文件地址,在docker中为`/usr/local/cuda/lib64`;`CUDNN_LIB_DIR`为cudnn库文件地址,在docker中为`/usr/lib/x86_64-linux-gnu/`。**注意**:以上路径都写绝对路径,不要写相对路径。
|
||||
其中,`OPENCV_DIR`为opencv编译安装的地址;`LIB_DIR`为下载(`paddle_inference`文件夹)或者编译生成的Paddle预测库地址(`build/paddle_inference_install_dir`文件夹);`CUDA_LIB_DIR`为cuda库文件地址,在docker中为`/usr/local/cuda/lib64`;`CUDNN_LIB_DIR`为cudnn库文件地址,在docker中为`/usr/lib/x86_64-linux-gnu/`。**注意:以上路径都写绝对路径,不要写相对路径。**
|
||||
|
||||
|
||||
* 编译完成之后,会在`build`文件夹下生成一个名为`ocr_system`的可执行文件。
|
||||
* 编译完成之后,会在`build`文件夹下生成一个名为`ocr_det`或`ocr_rec`或`ocr_system`的可执行文件。
|
||||
|
||||
|
||||
### 运行demo
|
||||
* 执行以下命令,完成对一幅图像的OCR识别与检测。
|
||||
|
||||
直接运行编译好的可执行文件:```./build/ocr_***```,可获得参数信息提示。
|
||||
##### 1. 检测demo运行方式:
|
||||
```shell
|
||||
sh tools/run.sh
|
||||
./build/ocr_det
|
||||
--det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer
|
||||
--image_dir=../../doc/imgs/12.jpg
|
||||
```
|
||||
##### 2. 识别demo运行方式:
|
||||
```shell
|
||||
./build/ocr_rec
|
||||
--rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer
|
||||
--image_dir=../../doc/imgs_words/ch/
|
||||
```
|
||||
##### 3. 串联demo运行方式:
|
||||
```shell
|
||||
# 不使用方向分类器
|
||||
./build/ocr_rec
|
||||
--det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer
|
||||
--rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer
|
||||
--image_dir=../../doc/imgs/12.jpg
|
||||
# 使用方向分类器
|
||||
./build/ocr_rec
|
||||
--det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer
|
||||
--use_angle_cls=true
|
||||
--cls_model_dir=inference/ch_ppocr_mobile_v2.0_cls_infer
|
||||
--rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer
|
||||
--image_dir=../../doc/imgs/12.jpg
|
||||
```
|
||||
|
||||
* 若需要使用方向分类器,则需要将`tools/config.txt`中的`use_angle_cls`参数修改为1,表示开启方向分类器的预测。
|
||||
* 更多地,tools/config.txt中的参数及解释如下。
|
||||
更多参数如下:
|
||||
|
||||
```
|
||||
use_gpu 0 # 是否使用GPU,1表示使用,0表示不使用
|
||||
gpu_id 0 # GPU id,使用GPU时有效
|
||||
gpu_mem 4000 # 申请的GPU内存
|
||||
cpu_math_library_num_threads 10 # CPU预测时的线程数,在机器核数充足的情况下,该值越大,预测速度越快
|
||||
use_mkldnn 1 # 是否使用mkldnn库
|
||||
|参数名称|类型|默认参数|意义|
|
||||
| --- | --- | --- | --- |
|
||||
|use_gpu|bool|false|是否使用GPU|
|
||||
|gpu_id|int|0|GPU id,使用GPU时有效|
|
||||
|gpu_mem|int|4000|申请的GPU内存|
|
||||
|cpu_math_library_num_threads|int|10|CPU预测时的线程数,在机器核数充足的情况下,该值越大,预测速度越快|
|
||||
|use_mkldnn|bool|true|是否使用mkldnn库|
|
||||
|**检测模型相关**|
|
||||
|det_model_dir|string|-|检测模型inference model地址|
|
||||
|max_side_len|int|960|输入图像长宽大于960时,等比例缩放图像,使得图像最长边为960|
|
||||
|det_db_thresh|float|0.3|用于过滤DB预测的二值化图像,设置为0.-0.3对结果影响不明显|
|
||||
|det_db_box_thresh|float|0.5|DB后处理过滤box的阈值,如果检测存在漏框情况,可酌情减小|
|
||||
|det_db_unclip_ratio|float|1.6|表示文本框的紧致程度,越小则文本框更靠近文本|
|
||||
|use_polygon_score|bool|false|是否使用多边形框计算bbox score,false表示使用矩形框计算。矩形框计算速度更快,多边形框对弯曲文本区域计算更准确。|
|
||||
|visualize|bool|true|是否对结果进行可视化,为1时,会在当前文件夹下保存文件名为`ocr_vis.png`的预测结果。|
|
||||
|**方向分类器相关**|
|
||||
|use_angle_cls|bool|false|是否使用方向分类器|
|
||||
|cls_model_dir|string|-|方向分类器inference model地址|
|
||||
|cls_thresh|float|0.9|方向分类器的得分阈值|
|
||||
|**识别模型相关**|
|
||||
|rec_model_dir|string|-|识别模型inference model地址|
|
||||
|char_list_file|string|../../ppocr/utils/ppocr_keys_v1.txt|字典文件|
|
||||
|
||||
# det config
|
||||
max_side_len 960 # 输入图像长宽大于960时,等比例缩放图像,使得图像最长边为960
|
||||
det_db_thresh 0.3 # 用于过滤DB预测的二值化图像,设置为0.-0.3对结果影响不明显
|
||||
det_db_box_thresh 0.5 # DB后处理过滤box的阈值,如果检测存在漏框情况,可酌情减小
|
||||
det_db_unclip_ratio 1.6 # 表示文本框的紧致程度,越小则文本框更靠近文本
|
||||
use_polygon_score 1 # 是否使用多边形框计算bbox score,0表示使用矩形框计算。矩形框计算速度更快,多边形框对弯曲文本区域计算更准确。
|
||||
det_model_dir ./inference/det_db # 检测模型inference model地址
|
||||
|
||||
# cls config
|
||||
use_angle_cls 0 # 是否使用方向分类器,0表示不使用,1表示使用
|
||||
cls_model_dir ./inference/cls # 方向分类器inference model地址
|
||||
cls_thresh 0.9 # 方向分类器的得分阈值
|
||||
|
||||
# rec config
|
||||
rec_model_dir ./inference/rec_crnn # 识别模型inference model地址
|
||||
char_list_file ../../ppocr/utils/ppocr_keys_v1.txt # 字典文件
|
||||
|
||||
# show the detection results
|
||||
visualize 1 # 是否对结果进行可视化,为1时,会在当前文件夹下保存文件名为`ocr_vis.png`的预测结果。
|
||||
```
|
||||
|
||||
* PaddleOCR也支持多语言的预测,更多支持的语言和模型可以参考[识别文档](../../doc/doc_ch/recognition.md)中的多语言字典与模型部分,如果希望进行多语言预测,只需将修改`tools/config.txt`中的`char_list_file`(字典文件路径)以及`rec_model_dir`(inference模型路径)字段即可。
|
||||
* PaddleOCR也支持多语言的预测,更多支持的语言和模型可以参考[识别文档](../../doc/doc_ch/recognition.md)中的多语言字典与模型部分,如果希望进行多语言预测,只需将修改`char_list_file`(字典文件路径)以及`rec_model_dir`(inference模型路径)字段即可。
|
||||
|
||||
最终屏幕上会输出检测结果如下。
|
||||
|
||||
|
|
|
@ -159,33 +159,22 @@ inference/
|
|||
* The compilation commands are as follows. The addresses of Paddle C++ inference library, opencv and other Dependencies need to be replaced with the actual addresses on your own machines.
|
||||
|
||||
```shell
|
||||
sh tools/build.sh
|
||||
sh tools/build.sh MODE(['det', 'rec', 'system'])
|
||||
```
|
||||
Here, `MODE` should be one of ['det', 'rec', 'system']. Choose one as your need. The explanation is as follows:
|
||||
```shell
|
||||
sh tools/build.sh det # build demo for detection only
|
||||
sh tools/build.sh rec # build demo for recogniton only
|
||||
sh tools/build.sh system # build demo for a system (including the text direction classifier)
|
||||
```
|
||||
|
||||
Specifically, the content in `tools/build.sh` is as follows.
|
||||
Specifically, you should modify the paths in `tools/build.sh`. The related content is as follows.
|
||||
|
||||
```shell
|
||||
OPENCV_DIR=your_opencv_dir
|
||||
LIB_DIR=your_paddle_inference_dir
|
||||
CUDA_LIB_DIR=your_cuda_lib_dir
|
||||
CUDNN_LIB_DIR=your_cudnn_lib_dir
|
||||
|
||||
BUILD_DIR=build
|
||||
rm -rf ${BUILD_DIR}
|
||||
mkdir ${BUILD_DIR}
|
||||
cd ${BUILD_DIR}
|
||||
cmake .. \
|
||||
-DPADDLE_LIB=${LIB_DIR} \
|
||||
-DWITH_MKL=ON \
|
||||
-DDEMO_NAME=ocr_system \
|
||||
-DWITH_GPU=OFF \
|
||||
-DWITH_STATIC_LIB=OFF \
|
||||
-DUSE_TENSORRT=OFF \
|
||||
-DOPENCV_DIR=${OPENCV_DIR} \
|
||||
-DCUDNN_LIB=${CUDNN_LIB_DIR} \
|
||||
-DCUDA_LIB=${CUDA_LIB_DIR} \
|
||||
|
||||
make -j
|
||||
```
|
||||
|
||||
`OPENCV_DIR` is the opencv installation path; `LIB_DIR` is the download (`paddle_inference` folder)
|
||||
|
@ -193,48 +182,65 @@ or the generated Paddle inference library path (`build/paddle_inference_install_
|
|||
`CUDA_LIB_DIR` is the cuda library file path, in docker; it is `/usr/local/cuda/lib64`; `CUDNN_LIB_DIR` is the cudnn library file path, in docker it is `/usr/lib/x86_64-linux-gnu/`.
|
||||
|
||||
|
||||
* After the compilation is completed, an executable file named `ocr_system` will be generated in the `build` folder.
|
||||
* After the compilation is completed, an executable file named `ocr_det` or `ocr_rec` or `ocr_system` will be generated in the `build` folder.
|
||||
|
||||
|
||||
### Run the demo
|
||||
* Execute the following command to complete the OCR recognition and detection of an image.
|
||||
|
||||
* Execute the built executable file by ```./build/ocr_***```. You'll get some command line parameter information.
|
||||
##### 1. run ocr_det demo:
|
||||
```shell
|
||||
sh tools/run.sh
|
||||
./build/ocr_det
|
||||
--det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer
|
||||
--image_dir=../../doc/imgs/12.jpg
|
||||
```
|
||||
##### 2. run ocr_rec demo:
|
||||
```shell
|
||||
./build/ocr_rec
|
||||
--rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer
|
||||
--image_dir=../../doc/imgs_words/ch/
|
||||
```
|
||||
##### 3. run ocr_system demo:
|
||||
```shell
|
||||
# without text direction classifier
|
||||
./build/ocr_rec
|
||||
--det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer
|
||||
--rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer
|
||||
--image_dir=../../doc/imgs/12.jpg
|
||||
# with text direction classifier
|
||||
./build/ocr_rec
|
||||
--det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer
|
||||
--use_angle_cls=true
|
||||
--cls_model_dir=inference/ch_ppocr_mobile_v2.0_cls_infer
|
||||
--rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer
|
||||
--image_dir=../../doc/imgs/12.jpg
|
||||
```
|
||||
|
||||
* If you want to orientation classifier to correct the detected boxes, you can set `use_angle_cls` in the file `tools/config.txt` as 1 to enable the function.
|
||||
* What's more, Parameters and their meanings in `tools/config.txt` are as follows.
|
||||
More parameters are as follows,
|
||||
|
||||
|parameter|data type|default|meaning|
|
||||
| --- | --- | --- | --- |
|
||||
|use_gpu|bool|false|Whether to use GPU|
|
||||
|gpu_id|int|0|GPU id when use_gpu is true|
|
||||
|gpu_mem|int|4000|GPU memory requested|
|
||||
|cpu_math_library_num_threads|int|10|Number of threads when using CPU inference. When machine cores is enough, the large the value, the faster the inference speed|
|
||||
|use_mkldnn|bool|true|Whether to use mkdlnn library|
|
||||
|**detection related**|
|
||||
|det_model_dir|string|-|Address of detection inference model|
|
||||
|max_side_len|int|960|Limit the maximum image height and width to 960|
|
||||
|det_db_thresh|float|0.3|Used to filter the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result|
|
||||
|det_db_box_thresh|float|0.5|DB post-processing filter box threshold, if there is a missing box detected, it can be reduced as appropriate|
|
||||
|det_db_unclip_ratio|float|1.6|Indicates the compactness of the text box, the smaller the value, the closer the text box to the text|
|
||||
|use_polygon_score|bool|false|Whether to use polygon box to calculate bbox score, false means to use rectangle box to calculate. Use rectangular box to calculate faster, and polygonal box more accurate for curved text area.|
|
||||
|visualize|bool|true|Whether to visualize the results,when it is set as true, The prediction result will be save in the image file `./ocr_vis.png`.|
|
||||
|**recogniton related**|
|
||||
|use_angle_cls|bool|false|Whether to use the direction classifier|
|
||||
|cls_model_dir|string|-|Address of direction classifier inference model|
|
||||
|cls_thresh|float|0.9|Score threshold of the direction classifier|
|
||||
|**classification related**|
|
||||
|rec_model_dir|string|-|Address of recognition inference model|
|
||||
|char_list_file|string|../../ppocr/utils/ppocr_keys_v1.txt|dictionary file|
|
||||
|
||||
```
|
||||
use_gpu 0 # Whether to use GPU, 0 means not to use, 1 means to use
|
||||
gpu_id 0 # GPU id when use_gpu is 1
|
||||
gpu_mem 4000 # GPU memory requested
|
||||
cpu_math_library_num_threads 10 # Number of threads when using CPU inference. When machine cores is enough, the large the value, the faster the inference speed
|
||||
use_mkldnn 1 # Whether to use mkdlnn library
|
||||
|
||||
max_side_len 960 # Limit the maximum image height and width to 960
|
||||
det_db_thresh 0.3 # Used to filter the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result
|
||||
det_db_box_thresh 0.5 # DDB post-processing filter box threshold, if there is a missing box detected, it can be reduced as appropriate
|
||||
det_db_unclip_ratio 1.6 # Indicates the compactness of the text box, the smaller the value, the closer the text box to the text
|
||||
use_polygon_score 1 # Whether to use polygon box to calculate bbox score, 0 means to use rectangle box to calculate. Use rectangular box to calculate faster, and polygonal box more accurate for curved text area.
|
||||
det_model_dir ./inference/det_db # Address of detection inference model
|
||||
|
||||
# cls config
|
||||
use_angle_cls 0 # Whether to use the direction classifier, 0 means not to use, 1 means to use
|
||||
cls_model_dir ./inference/cls # Address of direction classifier inference model
|
||||
cls_thresh 0.9 # Score threshold of the direction classifier
|
||||
|
||||
# rec config
|
||||
rec_model_dir ./inference/rec_crnn # Address of recognition inference model
|
||||
char_list_file ../../ppocr/utils/ppocr_keys_v1.txt # dictionary file
|
||||
|
||||
# show the detection results
|
||||
visualize 1 # Whether to visualize the results,when it is set as 1, The prediction result will be save in the image file `./ocr_vis.png`.
|
||||
```
|
||||
|
||||
* Multi-language inference is also supported in PaddleOCR, you can refer to [recognition tutorial](../../doc/doc_en/recognition_en.md) for more supported languages and models in PaddleOCR. Specifically, if you want to infer using multi-language models, you just need to modify values of `char_list_file` and `rec_model_dir` in file `tools/config.txt`.
|
||||
* Multi-language inference is also supported in PaddleOCR, you can refer to [recognition tutorial](../../doc/doc_en/recognition_en.md) for more supported languages and models in PaddleOCR. Specifically, if you want to infer using multi-language models, you just need to modify values of `char_list_file` and `rec_model_dir`.
|
||||
|
||||
|
||||
The detection results will be shown on the screen, which is as follows.
|
||||
|
|
|
@ -1,70 +0,0 @@
|
|||
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <include/config.h>
|
||||
|
||||
namespace PaddleOCR {
|
||||
|
||||
std::vector<std::string> OCRConfig::split(const std::string &str,
|
||||
const std::string &delim) {
|
||||
std::vector<std::string> res;
|
||||
if ("" == str)
|
||||
return res;
|
||||
|
||||
int strlen = str.length() + 1;
|
||||
char *strs = new char[strlen];
|
||||
std::strcpy(strs, str.c_str());
|
||||
|
||||
int delimlen = delim.length() + 1;
|
||||
char *d = new char[delimlen];
|
||||
std::strcpy(d, delim.c_str());
|
||||
|
||||
char *p = std::strtok(strs, d);
|
||||
while (p) {
|
||||
std::string s = p;
|
||||
res.push_back(s);
|
||||
p = std::strtok(NULL, d);
|
||||
}
|
||||
|
||||
delete[] strs;
|
||||
delete[] d;
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
std::map<std::string, std::string>
|
||||
OCRConfig::LoadConfig(const std::string &config_path) {
|
||||
auto config = Utility::ReadDict(config_path);
|
||||
|
||||
std::map<std::string, std::string> dict;
|
||||
for (int i = 0; i < config.size(); i++) {
|
||||
// pass for empty line or comment
|
||||
if (config[i].size() <= 1 || config[i][0] == '#') {
|
||||
continue;
|
||||
}
|
||||
std::vector<std::string> res = split(config[i], " ");
|
||||
dict[res[0]] = res[1];
|
||||
}
|
||||
return dict;
|
||||
}
|
||||
|
||||
void OCRConfig::PrintConfigInfo() {
|
||||
std::cout << "=======Paddle OCR inference config======" << std::endl;
|
||||
for (auto iter = config_map_.begin(); iter != config_map_.end(); iter++) {
|
||||
std::cout << iter->first << " : " << iter->second << std::endl;
|
||||
}
|
||||
std::cout << "=======End of Paddle OCR inference config======" << std::endl;
|
||||
}
|
||||
|
||||
} // namespace PaddleOCR
|
|
@ -1,103 +0,0 @@
|
|||
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "glog/logging.h"
|
||||
#include "omp.h"
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include <chrono>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <ostream>
|
||||
#include <vector>
|
||||
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <numeric>
|
||||
|
||||
#include <glog/logging.h>
|
||||
#include <include/config.h>
|
||||
#include <include/ocr_det.h>
|
||||
#include <include/ocr_rec.h>
|
||||
#include <include/utility.h>
|
||||
#include <sys/stat.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace PaddleOCR;
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
if (argc < 3) {
|
||||
std::cerr << "[ERROR] usage: " << argv[0]
|
||||
<< " configure_filepath image_path\n";
|
||||
exit(1);
|
||||
}
|
||||
|
||||
OCRConfig config(argv[1]);
|
||||
|
||||
config.PrintConfigInfo();
|
||||
|
||||
std::string img_path(argv[2]);
|
||||
std::vector<std::string> all_img_names;
|
||||
Utility::GetAllFiles((char *)img_path.c_str(), all_img_names);
|
||||
|
||||
DBDetector det(config.det_model_dir, config.use_gpu, config.gpu_id,
|
||||
config.gpu_mem, config.cpu_math_library_num_threads,
|
||||
config.use_mkldnn, config.max_side_len, config.det_db_thresh,
|
||||
config.det_db_box_thresh, config.det_db_unclip_ratio,
|
||||
config.use_polygon_score, config.visualize,
|
||||
config.use_tensorrt, config.use_fp16);
|
||||
|
||||
Classifier *cls = nullptr;
|
||||
if (config.use_angle_cls == true) {
|
||||
cls = new Classifier(config.cls_model_dir, config.use_gpu, config.gpu_id,
|
||||
config.gpu_mem, config.cpu_math_library_num_threads,
|
||||
config.use_mkldnn, config.cls_thresh,
|
||||
config.use_tensorrt, config.use_fp16);
|
||||
}
|
||||
|
||||
CRNNRecognizer rec(config.rec_model_dir, config.use_gpu, config.gpu_id,
|
||||
config.gpu_mem, config.cpu_math_library_num_threads,
|
||||
config.use_mkldnn, config.char_list_file,
|
||||
config.use_tensorrt, config.use_fp16);
|
||||
|
||||
auto start = std::chrono::system_clock::now();
|
||||
|
||||
for (auto img_dir : all_img_names) {
|
||||
LOG(INFO) << "The predict img: " << img_dir;
|
||||
|
||||
cv::Mat srcimg = cv::imread(img_dir, cv::IMREAD_COLOR);
|
||||
if (!srcimg.data) {
|
||||
std::cerr << "[ERROR] image read failed! image path: " << img_path
|
||||
<< "\n";
|
||||
exit(1);
|
||||
}
|
||||
std::vector<std::vector<std::vector<int>>> boxes;
|
||||
|
||||
det.Run(srcimg, boxes);
|
||||
|
||||
rec.Run(boxes, srcimg, cls);
|
||||
auto end = std::chrono::system_clock::now();
|
||||
auto duration =
|
||||
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
|
||||
std::cout << "Cost "
|
||||
<< double(duration.count()) *
|
||||
std::chrono::microseconds::period::num /
|
||||
std::chrono::microseconds::period::den
|
||||
<< "s" << std::endl;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,120 @@
|
|||
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "glog/logging.h"
|
||||
#include "omp.h"
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include <chrono>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <ostream>
|
||||
#include <vector>
|
||||
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <numeric>
|
||||
|
||||
#include <glog/logging.h>
|
||||
#include <include/ocr_det.h>
|
||||
#include <sys/stat.h>
|
||||
|
||||
#include <gflags/gflags.h>
|
||||
|
||||
DEFINE_bool(use_gpu, false, "Infering with GPU or CPU.");
|
||||
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute.");
|
||||
DEFINE_int32(gpu_mem, 4000, "GPU id when infering with GPU.");
|
||||
DEFINE_int32(cpu_math_library_num_threads, 10, "Num of threads with CPU.");
|
||||
DEFINE_bool(use_mkldnn, false, "Whether use mkldnn with CPU.");
|
||||
|
||||
DEFINE_string(image_dir, "", "Dir of input image.");
|
||||
DEFINE_string(det_model_dir, "", "Path of det inference model.");
|
||||
DEFINE_int32(max_side_len, 960, "max_side_len of input image.");
|
||||
DEFINE_double(det_db_thresh, 0.3, "Threshold of det_db_thresh.");
|
||||
DEFINE_double(det_db_box_thresh, 0.5, "Threshold of det_db_box_thresh.");
|
||||
DEFINE_double(det_db_unclip_ratio, 1.6, "Threshold of det_db_unclip_ratio.");
|
||||
DEFINE_bool(use_polygon_score, false, "Whether use polygon score.");
|
||||
DEFINE_bool(visualize, true, "Whether show the detection results.");
|
||||
|
||||
DEFINE_bool(use_tensorrt, false, "Whether use tensorrt.");
|
||||
DEFINE_bool(use_fp16, false, "Whether use fp16 when use tensorrt.");
|
||||
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace PaddleOCR;
|
||||
|
||||
|
||||
static bool PathExists(const std::string& path){
|
||||
#ifdef _WIN32
|
||||
struct _stat buffer;
|
||||
return (_stat(path.c_str(), &buffer) == 0);
|
||||
#else
|
||||
struct stat buffer;
|
||||
return (stat(path.c_str(), &buffer) == 0);
|
||||
#endif // !_WIN32
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
// Parsing command-line
|
||||
google::ParseCommandLineFlags(&argc, &argv, true);
|
||||
if (FLAGS_det_model_dir.empty() || FLAGS_image_dir.empty()) {
|
||||
std::cout << "Usage: ./ocr_det --det_model_dir=/PATH/TO/INFERENCE_MODEL/ "
|
||||
<< "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (!PathExists(FLAGS_image_dir)) {
|
||||
std::cerr << "[ERROR] image path not exist! image_dir: " << FLAGS_image_dir << endl;
|
||||
exit(1);
|
||||
}
|
||||
std::vector<cv::String> cv_all_img_names;
|
||||
cv::glob(FLAGS_image_dir, cv_all_img_names);
|
||||
std::cout << "total images num: " << cv_all_img_names.size() << endl;
|
||||
|
||||
DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
|
||||
FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
|
||||
FLAGS_use_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
|
||||
FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
|
||||
FLAGS_use_polygon_score, FLAGS_visualize,
|
||||
FLAGS_use_tensorrt, FLAGS_use_fp16);
|
||||
|
||||
auto start = std::chrono::system_clock::now();
|
||||
|
||||
for (int i = 0; i < cv_all_img_names.size(); ++i) {
|
||||
LOG(INFO) << "The predict img: " << cv_all_img_names[i];
|
||||
|
||||
cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
|
||||
if (!srcimg.data) {
|
||||
std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
|
||||
exit(1);
|
||||
}
|
||||
std::vector<std::vector<std::vector<int>>> boxes;
|
||||
|
||||
det.Run(srcimg, boxes);
|
||||
|
||||
auto end = std::chrono::system_clock::now();
|
||||
auto duration =
|
||||
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
|
||||
std::cout << "Cost "
|
||||
<< double(duration.count()) *
|
||||
std::chrono::microseconds::period::num /
|
||||
std::chrono::microseconds::period::den
|
||||
<< "s" << std::endl;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -150,7 +150,8 @@ void DBDetector::Run(cv::Mat &img,
|
|||
this->det_db_unclip_ratio_, this->use_polygon_score_);
|
||||
|
||||
boxes = post_processor_.FilterTagDetRes(boxes, ratio_h, ratio_w, srcimg);
|
||||
|
||||
std::cout << "Detected boxes num: " << boxes.size() << endl;
|
||||
|
||||
//// visualization
|
||||
if (this->visualize_) {
|
||||
Utility::VisualizeBboxes(srcimg, boxes);
|
|
@ -0,0 +1,112 @@
|
|||
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "glog/logging.h"
|
||||
#include "omp.h"
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include <chrono>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <ostream>
|
||||
#include <vector>
|
||||
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <numeric>
|
||||
|
||||
#include <glog/logging.h>
|
||||
#include <include/ocr_rec.h>
|
||||
#include <sys/stat.h>
|
||||
|
||||
#include <gflags/gflags.h>
|
||||
|
||||
DEFINE_bool(use_gpu, false, "Infering with GPU or CPU.");
|
||||
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute.");
|
||||
DEFINE_int32(gpu_mem, 4000, "GPU id when infering with GPU.");
|
||||
DEFINE_int32(cpu_math_library_num_threads, 10, "Num of threads with CPU.");
|
||||
DEFINE_bool(use_mkldnn, false, "Whether use mkldnn with CPU.");
|
||||
|
||||
DEFINE_string(image_dir, "", "Dir of input image.");
|
||||
DEFINE_string(rec_model_dir, "", "Path of rec inference model.");
|
||||
DEFINE_string(char_list_file, "../../ppocr/utils/ppocr_keys_v1.txt", "Path of dictionary.");
|
||||
|
||||
DEFINE_bool(use_tensorrt, false, "Whether use tensorrt.");
|
||||
DEFINE_bool(use_fp16, false, "Whether use fp16 when use tensorrt.");
|
||||
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace PaddleOCR;
|
||||
|
||||
|
||||
static bool PathExists(const std::string& path){
|
||||
#ifdef _WIN32
|
||||
struct _stat buffer;
|
||||
return (_stat(path.c_str(), &buffer) == 0);
|
||||
#else
|
||||
struct stat buffer;
|
||||
return (stat(path.c_str(), &buffer) == 0);
|
||||
#endif // !_WIN32
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
// Parsing command-line
|
||||
google::ParseCommandLineFlags(&argc, &argv, true);
|
||||
if (FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) {
|
||||
std::cout << "Usage: ./ocr_rec --rec_model_dir=/PATH/TO/INFERENCE_MODEL/ "
|
||||
<< "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (!PathExists(FLAGS_image_dir)) {
|
||||
std::cerr << "[ERROR] image path not exist! image_dir: " << FLAGS_image_dir << endl;
|
||||
exit(1);
|
||||
}
|
||||
std::vector<cv::String> cv_all_img_names;
|
||||
cv::glob(FLAGS_image_dir, cv_all_img_names);
|
||||
std::cout << "total images num: " << cv_all_img_names.size() << endl;
|
||||
|
||||
CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
|
||||
FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
|
||||
FLAGS_use_mkldnn, FLAGS_char_list_file,
|
||||
FLAGS_use_tensorrt, FLAGS_use_fp16);
|
||||
|
||||
auto start = std::chrono::system_clock::now();
|
||||
|
||||
for (int i = 0; i < cv_all_img_names.size(); ++i) {
|
||||
LOG(INFO) << "The predict img: " << cv_all_img_names[i];
|
||||
|
||||
cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
|
||||
if (!srcimg.data) {
|
||||
std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
|
||||
exit(1);
|
||||
}
|
||||
|
||||
rec.Run(srcimg);
|
||||
|
||||
auto end = std::chrono::system_clock::now();
|
||||
auto duration =
|
||||
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
|
||||
std::cout << "Cost "
|
||||
<< double(duration.count()) *
|
||||
std::chrono::microseconds::period::num /
|
||||
std::chrono::microseconds::period::den
|
||||
<< "s" << std::endl;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -16,80 +16,68 @@
|
|||
|
||||
namespace PaddleOCR {
|
||||
|
||||
void CRNNRecognizer::Run(std::vector<std::vector<std::vector<int>>> boxes,
|
||||
cv::Mat &img, Classifier *cls) {
|
||||
void CRNNRecognizer::Run(cv::Mat &img) {
|
||||
cv::Mat srcimg;
|
||||
img.copyTo(srcimg);
|
||||
cv::Mat crop_img;
|
||||
cv::Mat resize_img;
|
||||
|
||||
std::cout << "The predicted text is :" << std::endl;
|
||||
int index = 0;
|
||||
for (int i = 0; i < boxes.size(); i++) {
|
||||
crop_img = GetRotateCropImage(srcimg, boxes[i]);
|
||||
float wh_ratio = float(srcimg.cols) / float(srcimg.rows);
|
||||
|
||||
if (cls != nullptr) {
|
||||
crop_img = cls->Run(crop_img);
|
||||
this->resize_op_.Run(srcimg, resize_img, wh_ratio, this->use_tensorrt_);
|
||||
|
||||
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
|
||||
this->is_scale_);
|
||||
|
||||
std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
|
||||
|
||||
this->permute_op_.Run(&resize_img, input.data());
|
||||
|
||||
// Inference.
|
||||
auto input_names = this->predictor_->GetInputNames();
|
||||
auto input_t = this->predictor_->GetInputHandle(input_names[0]);
|
||||
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
|
||||
input_t->CopyFromCpu(input.data());
|
||||
this->predictor_->Run();
|
||||
|
||||
std::vector<float> predict_batch;
|
||||
auto output_names = this->predictor_->GetOutputNames();
|
||||
auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
|
||||
auto predict_shape = output_t->shape();
|
||||
|
||||
int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
|
||||
std::multiplies<int>());
|
||||
predict_batch.resize(out_num);
|
||||
|
||||
output_t->CopyToCpu(predict_batch.data());
|
||||
|
||||
// ctc decode
|
||||
std::vector<std::string> str_res;
|
||||
int argmax_idx;
|
||||
int last_index = 0;
|
||||
float score = 0.f;
|
||||
int count = 0;
|
||||
float max_value = 0.0f;
|
||||
|
||||
for (int n = 0; n < predict_shape[1]; n++) {
|
||||
argmax_idx =
|
||||
int(Utility::argmax(&predict_batch[n * predict_shape[2]],
|
||||
&predict_batch[(n + 1) * predict_shape[2]]));
|
||||
max_value =
|
||||
float(*std::max_element(&predict_batch[n * predict_shape[2]],
|
||||
&predict_batch[(n + 1) * predict_shape[2]]));
|
||||
|
||||
if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
|
||||
score += max_value;
|
||||
count += 1;
|
||||
str_res.push_back(label_list_[argmax_idx]);
|
||||
}
|
||||
|
||||
float wh_ratio = float(crop_img.cols) / float(crop_img.rows);
|
||||
|
||||
this->resize_op_.Run(crop_img, resize_img, wh_ratio, this->use_tensorrt_);
|
||||
|
||||
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
|
||||
this->is_scale_);
|
||||
|
||||
std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
|
||||
|
||||
this->permute_op_.Run(&resize_img, input.data());
|
||||
|
||||
// Inference.
|
||||
auto input_names = this->predictor_->GetInputNames();
|
||||
auto input_t = this->predictor_->GetInputHandle(input_names[0]);
|
||||
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
|
||||
input_t->CopyFromCpu(input.data());
|
||||
this->predictor_->Run();
|
||||
|
||||
std::vector<float> predict_batch;
|
||||
auto output_names = this->predictor_->GetOutputNames();
|
||||
auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
|
||||
auto predict_shape = output_t->shape();
|
||||
|
||||
int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
|
||||
std::multiplies<int>());
|
||||
predict_batch.resize(out_num);
|
||||
|
||||
output_t->CopyToCpu(predict_batch.data());
|
||||
|
||||
// ctc decode
|
||||
std::vector<std::string> str_res;
|
||||
int argmax_idx;
|
||||
int last_index = 0;
|
||||
float score = 0.f;
|
||||
int count = 0;
|
||||
float max_value = 0.0f;
|
||||
|
||||
for (int n = 0; n < predict_shape[1]; n++) {
|
||||
argmax_idx =
|
||||
int(Utility::argmax(&predict_batch[n * predict_shape[2]],
|
||||
&predict_batch[(n + 1) * predict_shape[2]]));
|
||||
max_value =
|
||||
float(*std::max_element(&predict_batch[n * predict_shape[2]],
|
||||
&predict_batch[(n + 1) * predict_shape[2]]));
|
||||
|
||||
if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
|
||||
score += max_value;
|
||||
count += 1;
|
||||
str_res.push_back(label_list_[argmax_idx]);
|
||||
}
|
||||
last_index = argmax_idx;
|
||||
}
|
||||
score /= count;
|
||||
for (int i = 0; i < str_res.size(); i++) {
|
||||
std::cout << str_res[i];
|
||||
}
|
||||
std::cout << "\tscore: " << score << std::endl;
|
||||
last_index = argmax_idx;
|
||||
}
|
||||
score /= count;
|
||||
for (int i = 0; i < str_res.size(); i++) {
|
||||
std::cout << str_res[i];
|
||||
}
|
||||
std::cout << "\tscore: " << score << std::endl;
|
||||
}
|
||||
|
||||
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
|
|
@ -0,0 +1,355 @@
|
|||
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <include/postprocess_op.h>
|
||||
|
||||
namespace PaddleOCR {
|
||||
|
||||
void PostProcessor::GetContourArea(const std::vector<std::vector<float>> &box,
|
||||
float unclip_ratio, float &distance) {
|
||||
int pts_num = 4;
|
||||
float area = 0.0f;
|
||||
float dist = 0.0f;
|
||||
for (int i = 0; i < pts_num; i++) {
|
||||
area += box[i][0] * box[(i + 1) % pts_num][1] -
|
||||
box[i][1] * box[(i + 1) % pts_num][0];
|
||||
dist += sqrtf((box[i][0] - box[(i + 1) % pts_num][0]) *
|
||||
(box[i][0] - box[(i + 1) % pts_num][0]) +
|
||||
(box[i][1] - box[(i + 1) % pts_num][1]) *
|
||||
(box[i][1] - box[(i + 1) % pts_num][1]));
|
||||
}
|
||||
area = fabs(float(area / 2.0));
|
||||
|
||||
distance = area * unclip_ratio / dist;
|
||||
}
|
||||
|
||||
cv::RotatedRect PostProcessor::UnClip(std::vector<std::vector<float>> box,
|
||||
const float &unclip_ratio) {
|
||||
float distance = 1.0;
|
||||
|
||||
GetContourArea(box, unclip_ratio, distance);
|
||||
|
||||
ClipperLib::ClipperOffset offset;
|
||||
ClipperLib::Path p;
|
||||
p << ClipperLib::IntPoint(int(box[0][0]), int(box[0][1]))
|
||||
<< ClipperLib::IntPoint(int(box[1][0]), int(box[1][1]))
|
||||
<< ClipperLib::IntPoint(int(box[2][0]), int(box[2][1]))
|
||||
<< ClipperLib::IntPoint(int(box[3][0]), int(box[3][1]));
|
||||
offset.AddPath(p, ClipperLib::jtRound, ClipperLib::etClosedPolygon);
|
||||
|
||||
ClipperLib::Paths soln;
|
||||
offset.Execute(soln, distance);
|
||||
std::vector<cv::Point2f> points;
|
||||
|
||||
for (int j = 0; j < soln.size(); j++) {
|
||||
for (int i = 0; i < soln[soln.size() - 1].size(); i++) {
|
||||
points.emplace_back(soln[j][i].X, soln[j][i].Y);
|
||||
}
|
||||
}
|
||||
cv::RotatedRect res;
|
||||
if (points.size() <= 0) {
|
||||
res = cv::RotatedRect(cv::Point2f(0, 0), cv::Size2f(1, 1), 0);
|
||||
} else {
|
||||
res = cv::minAreaRect(points);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
float **PostProcessor::Mat2Vec(cv::Mat mat) {
|
||||
auto **array = new float *[mat.rows];
|
||||
for (int i = 0; i < mat.rows; ++i)
|
||||
array[i] = new float[mat.cols];
|
||||
for (int i = 0; i < mat.rows; ++i) {
|
||||
for (int j = 0; j < mat.cols; ++j) {
|
||||
array[i][j] = mat.at<float>(i, j);
|
||||
}
|
||||
}
|
||||
|
||||
return array;
|
||||
}
|
||||
|
||||
std::vector<std::vector<int>>
|
||||
PostProcessor::OrderPointsClockwise(std::vector<std::vector<int>> pts) {
|
||||
std::vector<std::vector<int>> box = pts;
|
||||
std::sort(box.begin(), box.end(), XsortInt);
|
||||
|
||||
std::vector<std::vector<int>> leftmost = {box[0], box[1]};
|
||||
std::vector<std::vector<int>> rightmost = {box[2], box[3]};
|
||||
|
||||
if (leftmost[0][1] > leftmost[1][1])
|
||||
std::swap(leftmost[0], leftmost[1]);
|
||||
|
||||
if (rightmost[0][1] > rightmost[1][1])
|
||||
std::swap(rightmost[0], rightmost[1]);
|
||||
|
||||
std::vector<std::vector<int>> rect = {leftmost[0], rightmost[0], rightmost[1],
|
||||
leftmost[1]};
|
||||
return rect;
|
||||
}
|
||||
|
||||
std::vector<std::vector<float>> PostProcessor::Mat2Vector(cv::Mat mat) {
|
||||
std::vector<std::vector<float>> img_vec;
|
||||
std::vector<float> tmp;
|
||||
|
||||
for (int i = 0; i < mat.rows; ++i) {
|
||||
tmp.clear();
|
||||
for (int j = 0; j < mat.cols; ++j) {
|
||||
tmp.push_back(mat.at<float>(i, j));
|
||||
}
|
||||
img_vec.push_back(tmp);
|
||||
}
|
||||
return img_vec;
|
||||
}
|
||||
|
||||
bool PostProcessor::XsortFp32(std::vector<float> a, std::vector<float> b) {
|
||||
if (a[0] != b[0])
|
||||
return a[0] < b[0];
|
||||
return false;
|
||||
}
|
||||
|
||||
bool PostProcessor::XsortInt(std::vector<int> a, std::vector<int> b) {
|
||||
if (a[0] != b[0])
|
||||
return a[0] < b[0];
|
||||
return false;
|
||||
}
|
||||
|
||||
std::vector<std::vector<float>> PostProcessor::GetMiniBoxes(cv::RotatedRect box,
|
||||
float &ssid) {
|
||||
ssid = std::max(box.size.width, box.size.height);
|
||||
|
||||
cv::Mat points;
|
||||
cv::boxPoints(box, points);
|
||||
|
||||
auto array = Mat2Vector(points);
|
||||
std::sort(array.begin(), array.end(), XsortFp32);
|
||||
|
||||
std::vector<float> idx1 = array[0], idx2 = array[1], idx3 = array[2],
|
||||
idx4 = array[3];
|
||||
if (array[3][1] <= array[2][1]) {
|
||||
idx2 = array[3];
|
||||
idx3 = array[2];
|
||||
} else {
|
||||
idx2 = array[2];
|
||||
idx3 = array[3];
|
||||
}
|
||||
if (array[1][1] <= array[0][1]) {
|
||||
idx1 = array[1];
|
||||
idx4 = array[0];
|
||||
} else {
|
||||
idx1 = array[0];
|
||||
idx4 = array[1];
|
||||
}
|
||||
|
||||
array[0] = idx1;
|
||||
array[1] = idx2;
|
||||
array[2] = idx3;
|
||||
array[3] = idx4;
|
||||
|
||||
return array;
|
||||
}
|
||||
|
||||
float PostProcessor::PolygonScoreAcc(std::vector<cv::Point> contour,
|
||||
cv::Mat pred) {
|
||||
int width = pred.cols;
|
||||
int height = pred.rows;
|
||||
std::vector<float> box_x;
|
||||
std::vector<float> box_y;
|
||||
for (int i = 0; i < contour.size(); ++i) {
|
||||
box_x.push_back(contour[i].x);
|
||||
box_y.push_back(contour[i].y);
|
||||
}
|
||||
|
||||
int xmin =
|
||||
clamp(int(std::floor(*(std::min_element(box_x.begin(), box_x.end())))), 0,
|
||||
width - 1);
|
||||
int xmax =
|
||||
clamp(int(std::ceil(*(std::max_element(box_x.begin(), box_x.end())))), 0,
|
||||
width - 1);
|
||||
int ymin =
|
||||
clamp(int(std::floor(*(std::min_element(box_y.begin(), box_y.end())))), 0,
|
||||
height - 1);
|
||||
int ymax =
|
||||
clamp(int(std::ceil(*(std::max_element(box_y.begin(), box_y.end())))), 0,
|
||||
height - 1);
|
||||
|
||||
cv::Mat mask;
|
||||
mask = cv::Mat::zeros(ymax - ymin + 1, xmax - xmin + 1, CV_8UC1);
|
||||
|
||||
|
||||
cv::Point* rook_point = new cv::Point[contour.size()];
|
||||
|
||||
for (int i = 0; i < contour.size(); ++i) {
|
||||
rook_point[i] = cv::Point(int(box_x[i]) - xmin, int(box_y[i]) - ymin);
|
||||
}
|
||||
const cv::Point *ppt[1] = {rook_point};
|
||||
int npt[] = {int(contour.size())};
|
||||
|
||||
|
||||
cv::fillPoly(mask, ppt, npt, 1, cv::Scalar(1));
|
||||
|
||||
cv::Mat croppedImg;
|
||||
pred(cv::Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1)).copyTo(croppedImg);
|
||||
float score = cv::mean(croppedImg, mask)[0];
|
||||
|
||||
delete []rook_point;
|
||||
return score;
|
||||
}
|
||||
|
||||
float PostProcessor::BoxScoreFast(std::vector<std::vector<float>> box_array,
|
||||
cv::Mat pred) {
|
||||
auto array = box_array;
|
||||
int width = pred.cols;
|
||||
int height = pred.rows;
|
||||
|
||||
float box_x[4] = {array[0][0], array[1][0], array[2][0], array[3][0]};
|
||||
float box_y[4] = {array[0][1], array[1][1], array[2][1], array[3][1]};
|
||||
|
||||
int xmin = clamp(int(std::floor(*(std::min_element(box_x, box_x + 4)))), 0,
|
||||
width - 1);
|
||||
int xmax = clamp(int(std::ceil(*(std::max_element(box_x, box_x + 4)))), 0,
|
||||
width - 1);
|
||||
int ymin = clamp(int(std::floor(*(std::min_element(box_y, box_y + 4)))), 0,
|
||||
height - 1);
|
||||
int ymax = clamp(int(std::ceil(*(std::max_element(box_y, box_y + 4)))), 0,
|
||||
height - 1);
|
||||
|
||||
cv::Mat mask;
|
||||
mask = cv::Mat::zeros(ymax - ymin + 1, xmax - xmin + 1, CV_8UC1);
|
||||
|
||||
cv::Point root_point[4];
|
||||
root_point[0] = cv::Point(int(array[0][0]) - xmin, int(array[0][1]) - ymin);
|
||||
root_point[1] = cv::Point(int(array[1][0]) - xmin, int(array[1][1]) - ymin);
|
||||
root_point[2] = cv::Point(int(array[2][0]) - xmin, int(array[2][1]) - ymin);
|
||||
root_point[3] = cv::Point(int(array[3][0]) - xmin, int(array[3][1]) - ymin);
|
||||
const cv::Point *ppt[1] = {root_point};
|
||||
int npt[] = {4};
|
||||
cv::fillPoly(mask, ppt, npt, 1, cv::Scalar(1));
|
||||
|
||||
cv::Mat croppedImg;
|
||||
pred(cv::Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1))
|
||||
.copyTo(croppedImg);
|
||||
|
||||
auto score = cv::mean(croppedImg, mask)[0];
|
||||
return score;
|
||||
}
|
||||
|
||||
std::vector<std::vector<std::vector<int>>> PostProcessor::BoxesFromBitmap(
|
||||
const cv::Mat pred, const cv::Mat bitmap, const float &box_thresh,
|
||||
const float &det_db_unclip_ratio, const bool &use_polygon_score) {
|
||||
const int min_size = 3;
|
||||
const int max_candidates = 1000;
|
||||
|
||||
int width = bitmap.cols;
|
||||
int height = bitmap.rows;
|
||||
|
||||
std::vector<std::vector<cv::Point>> contours;
|
||||
std::vector<cv::Vec4i> hierarchy;
|
||||
|
||||
cv::findContours(bitmap, contours, hierarchy, cv::RETR_LIST,
|
||||
cv::CHAIN_APPROX_SIMPLE);
|
||||
|
||||
int num_contours =
|
||||
contours.size() >= max_candidates ? max_candidates : contours.size();
|
||||
|
||||
std::vector<std::vector<std::vector<int>>> boxes;
|
||||
|
||||
for (int _i = 0; _i < num_contours; _i++) {
|
||||
if (contours[_i].size() <= 2) {
|
||||
continue;
|
||||
}
|
||||
float ssid;
|
||||
cv::RotatedRect box = cv::minAreaRect(contours[_i]);
|
||||
auto array = GetMiniBoxes(box, ssid);
|
||||
|
||||
auto box_for_unclip = array;
|
||||
// end get_mini_box
|
||||
|
||||
if (ssid < min_size) {
|
||||
continue;
|
||||
}
|
||||
|
||||
float score;
|
||||
if (use_polygon_score)
|
||||
/* compute using polygon*/
|
||||
score = PolygonScoreAcc(contours[_i], pred);
|
||||
else
|
||||
score = BoxScoreFast(array, pred);
|
||||
|
||||
if (score < box_thresh)
|
||||
continue;
|
||||
|
||||
// start for unclip
|
||||
cv::RotatedRect points = UnClip(box_for_unclip, det_db_unclip_ratio);
|
||||
if (points.size.height < 1.001 && points.size.width < 1.001) {
|
||||
continue;
|
||||
}
|
||||
// end for unclip
|
||||
|
||||
cv::RotatedRect clipbox = points;
|
||||
auto cliparray = GetMiniBoxes(clipbox, ssid);
|
||||
|
||||
if (ssid < min_size + 2)
|
||||
continue;
|
||||
|
||||
int dest_width = pred.cols;
|
||||
int dest_height = pred.rows;
|
||||
std::vector<std::vector<int>> intcliparray;
|
||||
|
||||
for (int num_pt = 0; num_pt < 4; num_pt++) {
|
||||
std::vector<int> a{int(clampf(roundf(cliparray[num_pt][0] / float(width) *
|
||||
float(dest_width)),
|
||||
0, float(dest_width))),
|
||||
int(clampf(roundf(cliparray[num_pt][1] /
|
||||
float(height) * float(dest_height)),
|
||||
0, float(dest_height)))};
|
||||
intcliparray.push_back(a);
|
||||
}
|
||||
boxes.push_back(intcliparray);
|
||||
|
||||
} // end for
|
||||
return boxes;
|
||||
}
|
||||
|
||||
std::vector<std::vector<std::vector<int>>>
|
||||
PostProcessor::FilterTagDetRes(std::vector<std::vector<std::vector<int>>> boxes,
|
||||
float ratio_h, float ratio_w, cv::Mat srcimg) {
|
||||
int oriimg_h = srcimg.rows;
|
||||
int oriimg_w = srcimg.cols;
|
||||
|
||||
std::vector<std::vector<std::vector<int>>> root_points;
|
||||
for (int n = 0; n < boxes.size(); n++) {
|
||||
boxes[n] = OrderPointsClockwise(boxes[n]);
|
||||
for (int m = 0; m < boxes[0].size(); m++) {
|
||||
boxes[n][m][0] /= ratio_w;
|
||||
boxes[n][m][1] /= ratio_h;
|
||||
|
||||
boxes[n][m][0] = int(_min(_max(boxes[n][m][0], 0), oriimg_w - 1));
|
||||
boxes[n][m][1] = int(_min(_max(boxes[n][m][1], 0), oriimg_h - 1));
|
||||
}
|
||||
}
|
||||
|
||||
for (int n = 0; n < boxes.size(); n++) {
|
||||
int rect_width, rect_height;
|
||||
rect_width = int(sqrt(pow(boxes[n][0][0] - boxes[n][1][0], 2) +
|
||||
pow(boxes[n][0][1] - boxes[n][1][1], 2)));
|
||||
rect_height = int(sqrt(pow(boxes[n][0][0] - boxes[n][3][0], 2) +
|
||||
pow(boxes[n][0][1] - boxes[n][3][1], 2)));
|
||||
if (rect_width <= 4 || rect_height <= 4)
|
||||
continue;
|
||||
root_points.push_back(boxes[n]);
|
||||
}
|
||||
return root_points;
|
||||
}
|
||||
|
||||
} // namespace PaddleOCR
|
|
@ -0,0 +1,133 @@
|
|||
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "paddle_api.h"
|
||||
#include "paddle_inference_api.h"
|
||||
#include <chrono>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <ostream>
|
||||
#include <vector>
|
||||
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <numeric>
|
||||
|
||||
#include <include/preprocess_op.h>
|
||||
|
||||
namespace PaddleOCR {
|
||||
|
||||
void Permute::Run(const cv::Mat *im, float *data) {
|
||||
int rh = im->rows;
|
||||
int rw = im->cols;
|
||||
int rc = im->channels();
|
||||
for (int i = 0; i < rc; ++i) {
|
||||
cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw), i);
|
||||
}
|
||||
}
|
||||
|
||||
void Normalize::Run(cv::Mat *im, const std::vector<float> &mean,
|
||||
const std::vector<float> &scale, const bool is_scale) {
|
||||
double e = 1.0;
|
||||
if (is_scale) {
|
||||
e /= 255.0;
|
||||
}
|
||||
(*im).convertTo(*im, CV_32FC3, e);
|
||||
std::vector<cv::Mat> bgr_channels(3);
|
||||
cv::split(*im, bgr_channels);
|
||||
for (auto i = 0; i < bgr_channels.size(); i++) {
|
||||
bgr_channels[i].convertTo(bgr_channels[i], CV_32FC1, 1.0 * scale[i],
|
||||
(0.0 - mean[i]) * scale[i]);
|
||||
}
|
||||
cv::merge(bgr_channels, *im);
|
||||
}
|
||||
|
||||
void ResizeImgType0::Run(const cv::Mat &img, cv::Mat &resize_img,
|
||||
int max_size_len, float &ratio_h, float &ratio_w,
|
||||
bool use_tensorrt) {
|
||||
int w = img.cols;
|
||||
int h = img.rows;
|
||||
|
||||
float ratio = 1.f;
|
||||
int max_wh = w >= h ? w : h;
|
||||
if (max_wh > max_size_len) {
|
||||
if (h > w) {
|
||||
ratio = float(max_size_len) / float(h);
|
||||
} else {
|
||||
ratio = float(max_size_len) / float(w);
|
||||
}
|
||||
}
|
||||
|
||||
int resize_h = int(float(h) * ratio);
|
||||
int resize_w = int(float(w) * ratio);
|
||||
|
||||
resize_h = max(int(round(float(resize_h) / 32) * 32), 32);
|
||||
resize_w = max(int(round(float(resize_w) / 32) * 32), 32);
|
||||
|
||||
cv::resize(img, resize_img, cv::Size(resize_w, resize_h));
|
||||
ratio_h = float(resize_h) / float(h);
|
||||
ratio_w = float(resize_w) / float(w);
|
||||
}
|
||||
|
||||
void CrnnResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img, float wh_ratio,
|
||||
bool use_tensorrt,
|
||||
const std::vector<int> &rec_image_shape) {
|
||||
int imgC, imgH, imgW;
|
||||
imgC = rec_image_shape[0];
|
||||
imgH = rec_image_shape[1];
|
||||
imgW = rec_image_shape[2];
|
||||
|
||||
imgW = int(32 * wh_ratio);
|
||||
|
||||
float ratio = float(img.cols) / float(img.rows);
|
||||
int resize_w, resize_h;
|
||||
if (ceilf(imgH * ratio) > imgW)
|
||||
resize_w = imgW;
|
||||
else
|
||||
resize_w = int(ceilf(imgH * ratio));
|
||||
|
||||
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
|
||||
cv::INTER_LINEAR);
|
||||
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0,
|
||||
int(imgW - resize_img.cols), cv::BORDER_CONSTANT,
|
||||
{127, 127, 127});
|
||||
}
|
||||
|
||||
void ClsResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img,
|
||||
bool use_tensorrt,
|
||||
const std::vector<int> &rec_image_shape) {
|
||||
int imgC, imgH, imgW;
|
||||
imgC = rec_image_shape[0];
|
||||
imgH = rec_image_shape[1];
|
||||
imgW = rec_image_shape[2];
|
||||
|
||||
float ratio = float(img.cols) / float(img.rows);
|
||||
int resize_w, resize_h;
|
||||
if (ceilf(imgH * ratio) > imgW)
|
||||
resize_w = imgW;
|
||||
else
|
||||
resize_w = int(ceilf(imgH * ratio));
|
||||
|
||||
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
|
||||
cv::INTER_LINEAR);
|
||||
if (resize_w < imgW) {
|
||||
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0, imgW - resize_w,
|
||||
cv::BORDER_CONSTANT, cv::Scalar(0, 0, 0));
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace PaddleOCR
|
|
@ -0,0 +1,95 @@
|
|||
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <dirent.h>
|
||||
#include <include/utility.h>
|
||||
#include <iostream>
|
||||
#include <ostream>
|
||||
#include <sys/stat.h>
|
||||
#include <sys/types.h>
|
||||
#include <vector>
|
||||
|
||||
namespace PaddleOCR {
|
||||
|
||||
std::vector<std::string> Utility::ReadDict(const std::string &path) {
|
||||
std::ifstream in(path);
|
||||
std::string line;
|
||||
std::vector<std::string> m_vec;
|
||||
if (in) {
|
||||
while (getline(in, line)) {
|
||||
m_vec.push_back(line);
|
||||
}
|
||||
} else {
|
||||
std::cout << "no such label file: " << path << ", exit the program..."
|
||||
<< std::endl;
|
||||
exit(1);
|
||||
}
|
||||
return m_vec;
|
||||
}
|
||||
|
||||
void Utility::VisualizeBboxes(
|
||||
const cv::Mat &srcimg,
|
||||
const std::vector<std::vector<std::vector<int>>> &boxes) {
|
||||
cv::Mat img_vis;
|
||||
srcimg.copyTo(img_vis);
|
||||
for (int n = 0; n < boxes.size(); n++) {
|
||||
cv::Point rook_points[4];
|
||||
for (int m = 0; m < boxes[n].size(); m++) {
|
||||
rook_points[m] = cv::Point(int(boxes[n][m][0]), int(boxes[n][m][1]));
|
||||
}
|
||||
|
||||
const cv::Point *ppt[1] = {rook_points};
|
||||
int npt[] = {4};
|
||||
cv::polylines(img_vis, ppt, npt, 1, 1, CV_RGB(0, 255, 0), 2, 8, 0);
|
||||
}
|
||||
|
||||
cv::imwrite("./ocr_vis.png", img_vis);
|
||||
std::cout << "The detection visualized image saved in ./ocr_vis.png"
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
// list all files under a directory
|
||||
void Utility::GetAllFiles(const char *dir_name,
|
||||
std::vector<std::string> &all_inputs) {
|
||||
if (NULL == dir_name) {
|
||||
std::cout << " dir_name is null ! " << std::endl;
|
||||
return;
|
||||
}
|
||||
struct stat s;
|
||||
lstat(dir_name, &s);
|
||||
if (!S_ISDIR(s.st_mode)) {
|
||||
std::cout << "dir_name is not a valid directory !" << std::endl;
|
||||
all_inputs.push_back(dir_name);
|
||||
return;
|
||||
} else {
|
||||
struct dirent *filename; // return value for readdir()
|
||||
DIR *dir; // return value for opendir()
|
||||
dir = opendir(dir_name);
|
||||
if (NULL == dir) {
|
||||
std::cout << "Can not open dir " << dir_name << std::endl;
|
||||
return;
|
||||
}
|
||||
std::cout << "Successfully opened the dir !" << std::endl;
|
||||
while ((filename = readdir(dir)) != NULL) {
|
||||
if (strcmp(filename->d_name, ".") == 0 ||
|
||||
strcmp(filename->d_name, "..") == 0)
|
||||
continue;
|
||||
// img_dir + std::string("/") + all_inputs[0];
|
||||
all_inputs.push_back(dir_name + std::string("/") +
|
||||
std::string(filename->d_name));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace PaddleOCR
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,215 @@
|
|||
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "glog/logging.h"
|
||||
#include "omp.h"
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include <chrono>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <ostream>
|
||||
#include <vector>
|
||||
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <numeric>
|
||||
|
||||
#include <glog/logging.h>
|
||||
// #include <include/config.h>
|
||||
#include <include/ocr_det.h>
|
||||
#include <include/ocr_rec.h>
|
||||
// #include <include/utility.h>
|
||||
#include <sys/stat.h>
|
||||
|
||||
#include <gflags/gflags.h>
|
||||
|
||||
DEFINE_bool(use_gpu, false, "Infering with GPU or CPU.");
|
||||
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute.");
|
||||
DEFINE_int32(gpu_mem, 4000, "GPU id when infering with GPU.");
|
||||
DEFINE_int32(cpu_math_library_num_threads, 10, "Num of threads with CPU.");
|
||||
DEFINE_bool(use_mkldnn, false, "Whether use mkldnn with CPU.");
|
||||
|
||||
DEFINE_string(image_dir, "", "Dir of input image.");
|
||||
DEFINE_string(det_model_dir, "", "Path of det inference model.");
|
||||
DEFINE_int32(max_side_len, 960, "max_side_len of input image.");
|
||||
DEFINE_double(det_db_thresh, 0.3, "Threshold of det_db_thresh.");
|
||||
DEFINE_double(det_db_box_thresh, 0.5, "Threshold of det_db_box_thresh.");
|
||||
DEFINE_double(det_db_unclip_ratio, 1.6, "Threshold of det_db_unclip_ratio.");
|
||||
DEFINE_bool(use_polygon_score, false, "Whether use polygon score.");
|
||||
DEFINE_bool(visualize, true, "Whether show the detection results.");
|
||||
|
||||
DEFINE_bool(use_angle_cls, false, "Whether use use_angle_cls.");
|
||||
DEFINE_string(cls_model_dir, "", "Path of cls inference model.");
|
||||
DEFINE_double(cls_thresh, 0.9, "Threshold of cls_thresh.");
|
||||
|
||||
DEFINE_string(rec_model_dir, "", "Path of rec inference model.");
|
||||
DEFINE_string(char_list_file, "../../ppocr/utils/ppocr_keys_v1.txt", "Path of dictionary.");
|
||||
|
||||
DEFINE_bool(use_tensorrt, false, "Whether use tensorrt.");
|
||||
DEFINE_bool(use_fp16, false, "Whether use fp16 when use tensorrt.");
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace PaddleOCR;
|
||||
|
||||
|
||||
static bool PathExists(const std::string& path){
|
||||
#ifdef _WIN32
|
||||
struct _stat buffer;
|
||||
return (_stat(path.c_str(), &buffer) == 0);
|
||||
#else
|
||||
struct stat buffer;
|
||||
return (stat(path.c_str(), &buffer) == 0);
|
||||
#endif // !_WIN32
|
||||
}
|
||||
|
||||
|
||||
cv::Mat GetRotateCropImage(const cv::Mat &srcimage,
|
||||
std::vector<std::vector<int>> box) {
|
||||
cv::Mat image;
|
||||
srcimage.copyTo(image);
|
||||
std::vector<std::vector<int>> points = box;
|
||||
|
||||
int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
|
||||
int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
|
||||
int left = int(*std::min_element(x_collect, x_collect + 4));
|
||||
int right = int(*std::max_element(x_collect, x_collect + 4));
|
||||
int top = int(*std::min_element(y_collect, y_collect + 4));
|
||||
int bottom = int(*std::max_element(y_collect, y_collect + 4));
|
||||
|
||||
cv::Mat img_crop;
|
||||
image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);
|
||||
|
||||
for (int i = 0; i < points.size(); i++) {
|
||||
points[i][0] -= left;
|
||||
points[i][1] -= top;
|
||||
}
|
||||
|
||||
int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
|
||||
pow(points[0][1] - points[1][1], 2)));
|
||||
int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
|
||||
pow(points[0][1] - points[3][1], 2)));
|
||||
|
||||
cv::Point2f pts_std[4];
|
||||
pts_std[0] = cv::Point2f(0., 0.);
|
||||
pts_std[1] = cv::Point2f(img_crop_width, 0.);
|
||||
pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
|
||||
pts_std[3] = cv::Point2f(0.f, img_crop_height);
|
||||
|
||||
cv::Point2f pointsf[4];
|
||||
pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
|
||||
pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
|
||||
pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
|
||||
pointsf[3] = cv::Point2f(points[3][0], points[3][1]);
|
||||
|
||||
cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);
|
||||
|
||||
cv::Mat dst_img;
|
||||
cv::warpPerspective(img_crop, dst_img, M,
|
||||
cv::Size(img_crop_width, img_crop_height),
|
||||
cv::BORDER_REPLICATE);
|
||||
|
||||
if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
|
||||
cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
|
||||
cv::transpose(dst_img, srcCopy);
|
||||
cv::flip(srcCopy, srcCopy, 0);
|
||||
return srcCopy;
|
||||
} else {
|
||||
return dst_img;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
// Parsing command-line
|
||||
google::ParseCommandLineFlags(&argc, &argv, true);
|
||||
if ((FLAGS_det_model_dir.empty() || FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) ||
|
||||
(FLAGS_use_angle_cls && FLAGS_cls_model_dir.empty())) {
|
||||
std::cout << "Usage[default]: ./ocr_system --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
|
||||
<< "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
|
||||
<< "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
|
||||
std::cout << "Usage[use angle cls]: ./ocr_system --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
|
||||
<< "--use_angle_cls=true "
|
||||
<< "--cls_model_dir=/PATH/TO/CLS_INFERENCE_MODEL/ "
|
||||
<< "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
|
||||
<< "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (!PathExists(FLAGS_image_dir)) {
|
||||
std::cerr << "[ERROR] image path not exist! image_dir: " << FLAGS_image_dir << endl;
|
||||
exit(1);
|
||||
}
|
||||
std::vector<cv::String> cv_all_img_names;
|
||||
cv::glob(FLAGS_image_dir, cv_all_img_names);
|
||||
std::cout << "total images num: " << cv_all_img_names.size() << endl;
|
||||
|
||||
DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
|
||||
FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
|
||||
FLAGS_use_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
|
||||
FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
|
||||
FLAGS_use_polygon_score, FLAGS_visualize,
|
||||
FLAGS_use_tensorrt, FLAGS_use_fp16);
|
||||
|
||||
Classifier *cls = nullptr;
|
||||
if (FLAGS_use_angle_cls) {
|
||||
cls = new Classifier(FLAGS_cls_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
|
||||
FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
|
||||
FLAGS_use_mkldnn, FLAGS_cls_thresh,
|
||||
FLAGS_use_tensorrt, FLAGS_use_fp16);
|
||||
}
|
||||
|
||||
CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
|
||||
FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
|
||||
FLAGS_use_mkldnn, FLAGS_char_list_file,
|
||||
FLAGS_use_tensorrt, FLAGS_use_fp16);
|
||||
|
||||
auto start = std::chrono::system_clock::now();
|
||||
|
||||
for (int i = 0; i < cv_all_img_names.size(); ++i) {
|
||||
LOG(INFO) << "The predict img: " << cv_all_img_names[i];
|
||||
|
||||
cv::Mat srcimg = cv::imread(FLAGS_image_dir, cv::IMREAD_COLOR);
|
||||
if (!srcimg.data) {
|
||||
std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
|
||||
exit(1);
|
||||
}
|
||||
std::vector<std::vector<std::vector<int>>> boxes;
|
||||
|
||||
det.Run(srcimg, boxes);
|
||||
|
||||
cv::Mat crop_img;
|
||||
for (int j = 0; j < boxes.size(); j++) {
|
||||
crop_img = GetRotateCropImage(srcimg, boxes[j]);
|
||||
|
||||
if (cls != nullptr) {
|
||||
crop_img = cls->Run(crop_img);
|
||||
}
|
||||
rec.Run(crop_img);
|
||||
}
|
||||
|
||||
auto end = std::chrono::system_clock::now();
|
||||
auto duration =
|
||||
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
|
||||
std::cout << "Cost "
|
||||
<< double(duration.count()) *
|
||||
std::chrono::microseconds::period::num /
|
||||
std::chrono::microseconds::period::den
|
||||
<< "s" << std::endl;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,161 @@
|
|||
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <include/ocr_det.h>
|
||||
|
||||
namespace PaddleOCR {
|
||||
|
||||
void DBDetector::LoadModel(const std::string &model_dir) {
|
||||
// AnalysisConfig config;
|
||||
paddle_infer::Config config;
|
||||
config.SetModel(model_dir + "/inference.pdmodel",
|
||||
model_dir + "/inference.pdiparams");
|
||||
|
||||
if (this->use_gpu_) {
|
||||
config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
|
||||
if (this->use_tensorrt_) {
|
||||
config.EnableTensorRtEngine(
|
||||
1 << 20, 10, 3,
|
||||
this->use_fp16_ ? paddle_infer::Config::Precision::kHalf
|
||||
: paddle_infer::Config::Precision::kFloat32,
|
||||
false, false);
|
||||
std::map<std::string, std::vector<int>> min_input_shape = {
|
||||
{"x", {1, 3, 50, 50}},
|
||||
{"conv2d_92.tmp_0", {1, 96, 20, 20}},
|
||||
{"conv2d_91.tmp_0", {1, 96, 10, 10}},
|
||||
{"nearest_interp_v2_1.tmp_0", {1, 96, 10, 10}},
|
||||
{"nearest_interp_v2_2.tmp_0", {1, 96, 20, 20}},
|
||||
{"nearest_interp_v2_3.tmp_0", {1, 24, 20, 20}},
|
||||
{"nearest_interp_v2_4.tmp_0", {1, 24, 20, 20}},
|
||||
{"nearest_interp_v2_5.tmp_0", {1, 24, 20, 20}},
|
||||
{"elementwise_add_7", {1, 56, 2, 2}},
|
||||
{"nearest_interp_v2_0.tmp_0", {1, 96, 2, 2}}};
|
||||
std::map<std::string, std::vector<int>> max_input_shape = {
|
||||
{"x", {1, 3, this->max_side_len_, this->max_side_len_}},
|
||||
{"conv2d_92.tmp_0", {1, 96, 400, 400}},
|
||||
{"conv2d_91.tmp_0", {1, 96, 200, 200}},
|
||||
{"nearest_interp_v2_1.tmp_0", {1, 96, 200, 200}},
|
||||
{"nearest_interp_v2_2.tmp_0", {1, 96, 400, 400}},
|
||||
{"nearest_interp_v2_3.tmp_0", {1, 24, 400, 400}},
|
||||
{"nearest_interp_v2_4.tmp_0", {1, 24, 400, 400}},
|
||||
{"nearest_interp_v2_5.tmp_0", {1, 24, 400, 400}},
|
||||
{"elementwise_add_7", {1, 56, 400, 400}},
|
||||
{"nearest_interp_v2_0.tmp_0", {1, 96, 400, 400}}};
|
||||
std::map<std::string, std::vector<int>> opt_input_shape = {
|
||||
{"x", {1, 3, 640, 640}},
|
||||
{"conv2d_92.tmp_0", {1, 96, 160, 160}},
|
||||
{"conv2d_91.tmp_0", {1, 96, 80, 80}},
|
||||
{"nearest_interp_v2_1.tmp_0", {1, 96, 80, 80}},
|
||||
{"nearest_interp_v2_2.tmp_0", {1, 96, 160, 160}},
|
||||
{"nearest_interp_v2_3.tmp_0", {1, 24, 160, 160}},
|
||||
{"nearest_interp_v2_4.tmp_0", {1, 24, 160, 160}},
|
||||
{"nearest_interp_v2_5.tmp_0", {1, 24, 160, 160}},
|
||||
{"elementwise_add_7", {1, 56, 40, 40}},
|
||||
{"nearest_interp_v2_0.tmp_0", {1, 96, 40, 40}}};
|
||||
|
||||
config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
|
||||
opt_input_shape);
|
||||
}
|
||||
} else {
|
||||
config.DisableGpu();
|
||||
if (this->use_mkldnn_) {
|
||||
config.EnableMKLDNN();
|
||||
// cache 10 different shapes for mkldnn to avoid memory leak
|
||||
config.SetMkldnnCacheCapacity(10);
|
||||
}
|
||||
config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
|
||||
}
|
||||
// use zero_copy_run as default
|
||||
config.SwitchUseFeedFetchOps(false);
|
||||
// true for multiple input
|
||||
config.SwitchSpecifyInputNames(true);
|
||||
|
||||
config.SwitchIrOptim(true);
|
||||
|
||||
config.EnableMemoryOptim();
|
||||
// config.DisableGlogInfo();
|
||||
|
||||
this->predictor_ = CreatePredictor(config);
|
||||
}
|
||||
|
||||
void DBDetector::Run(cv::Mat &img,
|
||||
std::vector<std::vector<std::vector<int>>> &boxes) {
|
||||
float ratio_h{};
|
||||
float ratio_w{};
|
||||
|
||||
cv::Mat srcimg;
|
||||
cv::Mat resize_img;
|
||||
img.copyTo(srcimg);
|
||||
this->resize_op_.Run(img, resize_img, this->max_side_len_, ratio_h, ratio_w,
|
||||
this->use_tensorrt_);
|
||||
|
||||
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
|
||||
this->is_scale_);
|
||||
|
||||
std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
|
||||
this->permute_op_.Run(&resize_img, input.data());
|
||||
|
||||
// Inference.
|
||||
auto input_names = this->predictor_->GetInputNames();
|
||||
auto input_t = this->predictor_->GetInputHandle(input_names[0]);
|
||||
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
|
||||
input_t->CopyFromCpu(input.data());
|
||||
this->predictor_->Run();
|
||||
|
||||
std::vector<float> out_data;
|
||||
auto output_names = this->predictor_->GetOutputNames();
|
||||
auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
|
||||
std::vector<int> output_shape = output_t->shape();
|
||||
int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
|
||||
std::multiplies<int>());
|
||||
|
||||
out_data.resize(out_num);
|
||||
output_t->CopyToCpu(out_data.data());
|
||||
|
||||
int n2 = output_shape[2];
|
||||
int n3 = output_shape[3];
|
||||
int n = n2 * n3;
|
||||
|
||||
std::vector<float> pred(n, 0.0);
|
||||
std::vector<unsigned char> cbuf(n, ' ');
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
pred[i] = float(out_data[i]);
|
||||
cbuf[i] = (unsigned char)((out_data[i]) * 255);
|
||||
}
|
||||
|
||||
cv::Mat cbuf_map(n2, n3, CV_8UC1, (unsigned char *)cbuf.data());
|
||||
cv::Mat pred_map(n2, n3, CV_32F, (float *)pred.data());
|
||||
|
||||
const double threshold = this->det_db_thresh_ * 255;
|
||||
const double maxvalue = 255;
|
||||
cv::Mat bit_map;
|
||||
cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY);
|
||||
cv::Mat dilation_map;
|
||||
cv::Mat dila_ele = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2, 2));
|
||||
cv::dilate(bit_map, dilation_map, dila_ele);
|
||||
boxes = post_processor_.BoxesFromBitmap(
|
||||
pred_map, dilation_map, this->det_db_box_thresh_,
|
||||
this->det_db_unclip_ratio_, this->use_polygon_score_);
|
||||
|
||||
boxes = post_processor_.FilterTagDetRes(boxes, ratio_h, ratio_w, srcimg);
|
||||
std::cout << "Detected boxes num: " << boxes.size() << endl;
|
||||
|
||||
//// visualization
|
||||
if (this->visualize_) {
|
||||
Utility::VisualizeBboxes(srcimg, boxes);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace PaddleOCR
|
|
@ -0,0 +1,184 @@
|
|||
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <include/ocr_rec.h>
|
||||
|
||||
namespace PaddleOCR {
|
||||
|
||||
void CRNNRecognizer::Run(cv::Mat &img) {
|
||||
cv::Mat srcimg;
|
||||
img.copyTo(srcimg);
|
||||
cv::Mat resize_img;
|
||||
|
||||
float wh_ratio = float(srcimg.cols) / float(srcimg.rows);
|
||||
|
||||
this->resize_op_.Run(srcimg, resize_img, wh_ratio, this->use_tensorrt_);
|
||||
|
||||
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
|
||||
this->is_scale_);
|
||||
|
||||
std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
|
||||
|
||||
this->permute_op_.Run(&resize_img, input.data());
|
||||
|
||||
// Inference.
|
||||
auto input_names = this->predictor_->GetInputNames();
|
||||
auto input_t = this->predictor_->GetInputHandle(input_names[0]);
|
||||
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
|
||||
input_t->CopyFromCpu(input.data());
|
||||
this->predictor_->Run();
|
||||
|
||||
std::vector<float> predict_batch;
|
||||
auto output_names = this->predictor_->GetOutputNames();
|
||||
auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
|
||||
auto predict_shape = output_t->shape();
|
||||
|
||||
int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
|
||||
std::multiplies<int>());
|
||||
predict_batch.resize(out_num);
|
||||
|
||||
output_t->CopyToCpu(predict_batch.data());
|
||||
|
||||
// ctc decode
|
||||
std::vector<std::string> str_res;
|
||||
int argmax_idx;
|
||||
int last_index = 0;
|
||||
float score = 0.f;
|
||||
int count = 0;
|
||||
float max_value = 0.0f;
|
||||
|
||||
for (int n = 0; n < predict_shape[1]; n++) {
|
||||
argmax_idx =
|
||||
int(Utility::argmax(&predict_batch[n * predict_shape[2]],
|
||||
&predict_batch[(n + 1) * predict_shape[2]]));
|
||||
max_value =
|
||||
float(*std::max_element(&predict_batch[n * predict_shape[2]],
|
||||
&predict_batch[(n + 1) * predict_shape[2]]));
|
||||
|
||||
if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
|
||||
score += max_value;
|
||||
count += 1;
|
||||
str_res.push_back(label_list_[argmax_idx]);
|
||||
}
|
||||
last_index = argmax_idx;
|
||||
}
|
||||
score /= count;
|
||||
for (int i = 0; i < str_res.size(); i++) {
|
||||
std::cout << str_res[i];
|
||||
}
|
||||
std::cout << "\tscore: " << score << std::endl;
|
||||
}
|
||||
|
||||
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
|
||||
// AnalysisConfig config;
|
||||
paddle_infer::Config config;
|
||||
config.SetModel(model_dir + "/inference.pdmodel",
|
||||
model_dir + "/inference.pdiparams");
|
||||
|
||||
if (this->use_gpu_) {
|
||||
config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
|
||||
if (this->use_tensorrt_) {
|
||||
config.EnableTensorRtEngine(
|
||||
1 << 20, 10, 3,
|
||||
this->use_fp16_ ? paddle_infer::Config::Precision::kHalf
|
||||
: paddle_infer::Config::Precision::kFloat32,
|
||||
false, false);
|
||||
std::map<std::string, std::vector<int>> min_input_shape = {
|
||||
{"x", {1, 3, 32, 10}}};
|
||||
std::map<std::string, std::vector<int>> max_input_shape = {
|
||||
{"x", {1, 3, 32, 2000}}};
|
||||
std::map<std::string, std::vector<int>> opt_input_shape = {
|
||||
{"x", {1, 3, 32, 320}}};
|
||||
|
||||
config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
|
||||
opt_input_shape);
|
||||
}
|
||||
} else {
|
||||
config.DisableGpu();
|
||||
if (this->use_mkldnn_) {
|
||||
config.EnableMKLDNN();
|
||||
// cache 10 different shapes for mkldnn to avoid memory leak
|
||||
config.SetMkldnnCacheCapacity(10);
|
||||
}
|
||||
config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
|
||||
}
|
||||
|
||||
config.SwitchUseFeedFetchOps(false);
|
||||
// true for multiple input
|
||||
config.SwitchSpecifyInputNames(true);
|
||||
|
||||
config.SwitchIrOptim(true);
|
||||
|
||||
config.EnableMemoryOptim();
|
||||
config.DisableGlogInfo();
|
||||
|
||||
this->predictor_ = CreatePredictor(config);
|
||||
}
|
||||
|
||||
cv::Mat CRNNRecognizer::GetRotateCropImage(const cv::Mat &srcimage,
|
||||
std::vector<std::vector<int>> box) {
|
||||
cv::Mat image;
|
||||
srcimage.copyTo(image);
|
||||
std::vector<std::vector<int>> points = box;
|
||||
|
||||
int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
|
||||
int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
|
||||
int left = int(*std::min_element(x_collect, x_collect + 4));
|
||||
int right = int(*std::max_element(x_collect, x_collect + 4));
|
||||
int top = int(*std::min_element(y_collect, y_collect + 4));
|
||||
int bottom = int(*std::max_element(y_collect, y_collect + 4));
|
||||
|
||||
cv::Mat img_crop;
|
||||
image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);
|
||||
|
||||
for (int i = 0; i < points.size(); i++) {
|
||||
points[i][0] -= left;
|
||||
points[i][1] -= top;
|
||||
}
|
||||
|
||||
int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
|
||||
pow(points[0][1] - points[1][1], 2)));
|
||||
int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
|
||||
pow(points[0][1] - points[3][1], 2)));
|
||||
|
||||
cv::Point2f pts_std[4];
|
||||
pts_std[0] = cv::Point2f(0., 0.);
|
||||
pts_std[1] = cv::Point2f(img_crop_width, 0.);
|
||||
pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
|
||||
pts_std[3] = cv::Point2f(0.f, img_crop_height);
|
||||
|
||||
cv::Point2f pointsf[4];
|
||||
pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
|
||||
pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
|
||||
pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
|
||||
pointsf[3] = cv::Point2f(points[3][0], points[3][1]);
|
||||
|
||||
cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);
|
||||
|
||||
cv::Mat dst_img;
|
||||
cv::warpPerspective(img_crop, dst_img, M,
|
||||
cv::Size(img_crop_width, img_crop_height),
|
||||
cv::BORDER_REPLICATE);
|
||||
|
||||
if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
|
||||
cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
|
||||
cv::transpose(dst_img, srcCopy);
|
||||
cv::flip(srcCopy, srcCopy, 0);
|
||||
return srcCopy;
|
||||
} else {
|
||||
return dst_img;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace PaddleOCR
|
|
@ -0,0 +1,355 @@
|
|||
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <include/postprocess_op.h>
|
||||
|
||||
namespace PaddleOCR {
|
||||
|
||||
void PostProcessor::GetContourArea(const std::vector<std::vector<float>> &box,
|
||||
float unclip_ratio, float &distance) {
|
||||
int pts_num = 4;
|
||||
float area = 0.0f;
|
||||
float dist = 0.0f;
|
||||
for (int i = 0; i < pts_num; i++) {
|
||||
area += box[i][0] * box[(i + 1) % pts_num][1] -
|
||||
box[i][1] * box[(i + 1) % pts_num][0];
|
||||
dist += sqrtf((box[i][0] - box[(i + 1) % pts_num][0]) *
|
||||
(box[i][0] - box[(i + 1) % pts_num][0]) +
|
||||
(box[i][1] - box[(i + 1) % pts_num][1]) *
|
||||
(box[i][1] - box[(i + 1) % pts_num][1]));
|
||||
}
|
||||
area = fabs(float(area / 2.0));
|
||||
|
||||
distance = area * unclip_ratio / dist;
|
||||
}
|
||||
|
||||
cv::RotatedRect PostProcessor::UnClip(std::vector<std::vector<float>> box,
|
||||
const float &unclip_ratio) {
|
||||
float distance = 1.0;
|
||||
|
||||
GetContourArea(box, unclip_ratio, distance);
|
||||
|
||||
ClipperLib::ClipperOffset offset;
|
||||
ClipperLib::Path p;
|
||||
p << ClipperLib::IntPoint(int(box[0][0]), int(box[0][1]))
|
||||
<< ClipperLib::IntPoint(int(box[1][0]), int(box[1][1]))
|
||||
<< ClipperLib::IntPoint(int(box[2][0]), int(box[2][1]))
|
||||
<< ClipperLib::IntPoint(int(box[3][0]), int(box[3][1]));
|
||||
offset.AddPath(p, ClipperLib::jtRound, ClipperLib::etClosedPolygon);
|
||||
|
||||
ClipperLib::Paths soln;
|
||||
offset.Execute(soln, distance);
|
||||
std::vector<cv::Point2f> points;
|
||||
|
||||
for (int j = 0; j < soln.size(); j++) {
|
||||
for (int i = 0; i < soln[soln.size() - 1].size(); i++) {
|
||||
points.emplace_back(soln[j][i].X, soln[j][i].Y);
|
||||
}
|
||||
}
|
||||
cv::RotatedRect res;
|
||||
if (points.size() <= 0) {
|
||||
res = cv::RotatedRect(cv::Point2f(0, 0), cv::Size2f(1, 1), 0);
|
||||
} else {
|
||||
res = cv::minAreaRect(points);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
float **PostProcessor::Mat2Vec(cv::Mat mat) {
|
||||
auto **array = new float *[mat.rows];
|
||||
for (int i = 0; i < mat.rows; ++i)
|
||||
array[i] = new float[mat.cols];
|
||||
for (int i = 0; i < mat.rows; ++i) {
|
||||
for (int j = 0; j < mat.cols; ++j) {
|
||||
array[i][j] = mat.at<float>(i, j);
|
||||
}
|
||||
}
|
||||
|
||||
return array;
|
||||
}
|
||||
|
||||
std::vector<std::vector<int>>
|
||||
PostProcessor::OrderPointsClockwise(std::vector<std::vector<int>> pts) {
|
||||
std::vector<std::vector<int>> box = pts;
|
||||
std::sort(box.begin(), box.end(), XsortInt);
|
||||
|
||||
std::vector<std::vector<int>> leftmost = {box[0], box[1]};
|
||||
std::vector<std::vector<int>> rightmost = {box[2], box[3]};
|
||||
|
||||
if (leftmost[0][1] > leftmost[1][1])
|
||||
std::swap(leftmost[0], leftmost[1]);
|
||||
|
||||
if (rightmost[0][1] > rightmost[1][1])
|
||||
std::swap(rightmost[0], rightmost[1]);
|
||||
|
||||
std::vector<std::vector<int>> rect = {leftmost[0], rightmost[0], rightmost[1],
|
||||
leftmost[1]};
|
||||
return rect;
|
||||
}
|
||||
|
||||
std::vector<std::vector<float>> PostProcessor::Mat2Vector(cv::Mat mat) {
|
||||
std::vector<std::vector<float>> img_vec;
|
||||
std::vector<float> tmp;
|
||||
|
||||
for (int i = 0; i < mat.rows; ++i) {
|
||||
tmp.clear();
|
||||
for (int j = 0; j < mat.cols; ++j) {
|
||||
tmp.push_back(mat.at<float>(i, j));
|
||||
}
|
||||
img_vec.push_back(tmp);
|
||||
}
|
||||
return img_vec;
|
||||
}
|
||||
|
||||
bool PostProcessor::XsortFp32(std::vector<float> a, std::vector<float> b) {
|
||||
if (a[0] != b[0])
|
||||
return a[0] < b[0];
|
||||
return false;
|
||||
}
|
||||
|
||||
bool PostProcessor::XsortInt(std::vector<int> a, std::vector<int> b) {
|
||||
if (a[0] != b[0])
|
||||
return a[0] < b[0];
|
||||
return false;
|
||||
}
|
||||
|
||||
std::vector<std::vector<float>> PostProcessor::GetMiniBoxes(cv::RotatedRect box,
|
||||
float &ssid) {
|
||||
ssid = std::max(box.size.width, box.size.height);
|
||||
|
||||
cv::Mat points;
|
||||
cv::boxPoints(box, points);
|
||||
|
||||
auto array = Mat2Vector(points);
|
||||
std::sort(array.begin(), array.end(), XsortFp32);
|
||||
|
||||
std::vector<float> idx1 = array[0], idx2 = array[1], idx3 = array[2],
|
||||
idx4 = array[3];
|
||||
if (array[3][1] <= array[2][1]) {
|
||||
idx2 = array[3];
|
||||
idx3 = array[2];
|
||||
} else {
|
||||
idx2 = array[2];
|
||||
idx3 = array[3];
|
||||
}
|
||||
if (array[1][1] <= array[0][1]) {
|
||||
idx1 = array[1];
|
||||
idx4 = array[0];
|
||||
} else {
|
||||
idx1 = array[0];
|
||||
idx4 = array[1];
|
||||
}
|
||||
|
||||
array[0] = idx1;
|
||||
array[1] = idx2;
|
||||
array[2] = idx3;
|
||||
array[3] = idx4;
|
||||
|
||||
return array;
|
||||
}
|
||||
|
||||
float PostProcessor::PolygonScoreAcc(std::vector<cv::Point> contour,
|
||||
cv::Mat pred) {
|
||||
int width = pred.cols;
|
||||
int height = pred.rows;
|
||||
std::vector<float> box_x;
|
||||
std::vector<float> box_y;
|
||||
for (int i = 0; i < contour.size(); ++i) {
|
||||
box_x.push_back(contour[i].x);
|
||||
box_y.push_back(contour[i].y);
|
||||
}
|
||||
|
||||
int xmin =
|
||||
clamp(int(std::floor(*(std::min_element(box_x.begin(), box_x.end())))), 0,
|
||||
width - 1);
|
||||
int xmax =
|
||||
clamp(int(std::ceil(*(std::max_element(box_x.begin(), box_x.end())))), 0,
|
||||
width - 1);
|
||||
int ymin =
|
||||
clamp(int(std::floor(*(std::min_element(box_y.begin(), box_y.end())))), 0,
|
||||
height - 1);
|
||||
int ymax =
|
||||
clamp(int(std::ceil(*(std::max_element(box_y.begin(), box_y.end())))), 0,
|
||||
height - 1);
|
||||
|
||||
cv::Mat mask;
|
||||
mask = cv::Mat::zeros(ymax - ymin + 1, xmax - xmin + 1, CV_8UC1);
|
||||
|
||||
|
||||
cv::Point* rook_point = new cv::Point[contour.size()];
|
||||
|
||||
for (int i = 0; i < contour.size(); ++i) {
|
||||
rook_point[i] = cv::Point(int(box_x[i]) - xmin, int(box_y[i]) - ymin);
|
||||
}
|
||||
const cv::Point *ppt[1] = {rook_point};
|
||||
int npt[] = {int(contour.size())};
|
||||
|
||||
|
||||
cv::fillPoly(mask, ppt, npt, 1, cv::Scalar(1));
|
||||
|
||||
cv::Mat croppedImg;
|
||||
pred(cv::Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1)).copyTo(croppedImg);
|
||||
float score = cv::mean(croppedImg, mask)[0];
|
||||
|
||||
delete []rook_point;
|
||||
return score;
|
||||
}
|
||||
|
||||
float PostProcessor::BoxScoreFast(std::vector<std::vector<float>> box_array,
|
||||
cv::Mat pred) {
|
||||
auto array = box_array;
|
||||
int width = pred.cols;
|
||||
int height = pred.rows;
|
||||
|
||||
float box_x[4] = {array[0][0], array[1][0], array[2][0], array[3][0]};
|
||||
float box_y[4] = {array[0][1], array[1][1], array[2][1], array[3][1]};
|
||||
|
||||
int xmin = clamp(int(std::floor(*(std::min_element(box_x, box_x + 4)))), 0,
|
||||
width - 1);
|
||||
int xmax = clamp(int(std::ceil(*(std::max_element(box_x, box_x + 4)))), 0,
|
||||
width - 1);
|
||||
int ymin = clamp(int(std::floor(*(std::min_element(box_y, box_y + 4)))), 0,
|
||||
height - 1);
|
||||
int ymax = clamp(int(std::ceil(*(std::max_element(box_y, box_y + 4)))), 0,
|
||||
height - 1);
|
||||
|
||||
cv::Mat mask;
|
||||
mask = cv::Mat::zeros(ymax - ymin + 1, xmax - xmin + 1, CV_8UC1);
|
||||
|
||||
cv::Point root_point[4];
|
||||
root_point[0] = cv::Point(int(array[0][0]) - xmin, int(array[0][1]) - ymin);
|
||||
root_point[1] = cv::Point(int(array[1][0]) - xmin, int(array[1][1]) - ymin);
|
||||
root_point[2] = cv::Point(int(array[2][0]) - xmin, int(array[2][1]) - ymin);
|
||||
root_point[3] = cv::Point(int(array[3][0]) - xmin, int(array[3][1]) - ymin);
|
||||
const cv::Point *ppt[1] = {root_point};
|
||||
int npt[] = {4};
|
||||
cv::fillPoly(mask, ppt, npt, 1, cv::Scalar(1));
|
||||
|
||||
cv::Mat croppedImg;
|
||||
pred(cv::Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1))
|
||||
.copyTo(croppedImg);
|
||||
|
||||
auto score = cv::mean(croppedImg, mask)[0];
|
||||
return score;
|
||||
}
|
||||
|
||||
std::vector<std::vector<std::vector<int>>> PostProcessor::BoxesFromBitmap(
|
||||
const cv::Mat pred, const cv::Mat bitmap, const float &box_thresh,
|
||||
const float &det_db_unclip_ratio, const bool &use_polygon_score) {
|
||||
const int min_size = 3;
|
||||
const int max_candidates = 1000;
|
||||
|
||||
int width = bitmap.cols;
|
||||
int height = bitmap.rows;
|
||||
|
||||
std::vector<std::vector<cv::Point>> contours;
|
||||
std::vector<cv::Vec4i> hierarchy;
|
||||
|
||||
cv::findContours(bitmap, contours, hierarchy, cv::RETR_LIST,
|
||||
cv::CHAIN_APPROX_SIMPLE);
|
||||
|
||||
int num_contours =
|
||||
contours.size() >= max_candidates ? max_candidates : contours.size();
|
||||
|
||||
std::vector<std::vector<std::vector<int>>> boxes;
|
||||
|
||||
for (int _i = 0; _i < num_contours; _i++) {
|
||||
if (contours[_i].size() <= 2) {
|
||||
continue;
|
||||
}
|
||||
float ssid;
|
||||
cv::RotatedRect box = cv::minAreaRect(contours[_i]);
|
||||
auto array = GetMiniBoxes(box, ssid);
|
||||
|
||||
auto box_for_unclip = array;
|
||||
// end get_mini_box
|
||||
|
||||
if (ssid < min_size) {
|
||||
continue;
|
||||
}
|
||||
|
||||
float score;
|
||||
if (use_polygon_score)
|
||||
/* compute using polygon*/
|
||||
score = PolygonScoreAcc(contours[_i], pred);
|
||||
else
|
||||
score = BoxScoreFast(array, pred);
|
||||
|
||||
if (score < box_thresh)
|
||||
continue;
|
||||
|
||||
// start for unclip
|
||||
cv::RotatedRect points = UnClip(box_for_unclip, det_db_unclip_ratio);
|
||||
if (points.size.height < 1.001 && points.size.width < 1.001) {
|
||||
continue;
|
||||
}
|
||||
// end for unclip
|
||||
|
||||
cv::RotatedRect clipbox = points;
|
||||
auto cliparray = GetMiniBoxes(clipbox, ssid);
|
||||
|
||||
if (ssid < min_size + 2)
|
||||
continue;
|
||||
|
||||
int dest_width = pred.cols;
|
||||
int dest_height = pred.rows;
|
||||
std::vector<std::vector<int>> intcliparray;
|
||||
|
||||
for (int num_pt = 0; num_pt < 4; num_pt++) {
|
||||
std::vector<int> a{int(clampf(roundf(cliparray[num_pt][0] / float(width) *
|
||||
float(dest_width)),
|
||||
0, float(dest_width))),
|
||||
int(clampf(roundf(cliparray[num_pt][1] /
|
||||
float(height) * float(dest_height)),
|
||||
0, float(dest_height)))};
|
||||
intcliparray.push_back(a);
|
||||
}
|
||||
boxes.push_back(intcliparray);
|
||||
|
||||
} // end for
|
||||
return boxes;
|
||||
}
|
||||
|
||||
std::vector<std::vector<std::vector<int>>>
|
||||
PostProcessor::FilterTagDetRes(std::vector<std::vector<std::vector<int>>> boxes,
|
||||
float ratio_h, float ratio_w, cv::Mat srcimg) {
|
||||
int oriimg_h = srcimg.rows;
|
||||
int oriimg_w = srcimg.cols;
|
||||
|
||||
std::vector<std::vector<std::vector<int>>> root_points;
|
||||
for (int n = 0; n < boxes.size(); n++) {
|
||||
boxes[n] = OrderPointsClockwise(boxes[n]);
|
||||
for (int m = 0; m < boxes[0].size(); m++) {
|
||||
boxes[n][m][0] /= ratio_w;
|
||||
boxes[n][m][1] /= ratio_h;
|
||||
|
||||
boxes[n][m][0] = int(_min(_max(boxes[n][m][0], 0), oriimg_w - 1));
|
||||
boxes[n][m][1] = int(_min(_max(boxes[n][m][1], 0), oriimg_h - 1));
|
||||
}
|
||||
}
|
||||
|
||||
for (int n = 0; n < boxes.size(); n++) {
|
||||
int rect_width, rect_height;
|
||||
rect_width = int(sqrt(pow(boxes[n][0][0] - boxes[n][1][0], 2) +
|
||||
pow(boxes[n][0][1] - boxes[n][1][1], 2)));
|
||||
rect_height = int(sqrt(pow(boxes[n][0][0] - boxes[n][3][0], 2) +
|
||||
pow(boxes[n][0][1] - boxes[n][3][1], 2)));
|
||||
if (rect_width <= 4 || rect_height <= 4)
|
||||
continue;
|
||||
root_points.push_back(boxes[n]);
|
||||
}
|
||||
return root_points;
|
||||
}
|
||||
|
||||
} // namespace PaddleOCR
|
|
@ -0,0 +1,133 @@
|
|||
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "paddle_api.h"
|
||||
#include "paddle_inference_api.h"
|
||||
#include <chrono>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <ostream>
|
||||
#include <vector>
|
||||
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <numeric>
|
||||
|
||||
#include <include/preprocess_op.h>
|
||||
|
||||
namespace PaddleOCR {
|
||||
|
||||
void Permute::Run(const cv::Mat *im, float *data) {
|
||||
int rh = im->rows;
|
||||
int rw = im->cols;
|
||||
int rc = im->channels();
|
||||
for (int i = 0; i < rc; ++i) {
|
||||
cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw), i);
|
||||
}
|
||||
}
|
||||
|
||||
void Normalize::Run(cv::Mat *im, const std::vector<float> &mean,
|
||||
const std::vector<float> &scale, const bool is_scale) {
|
||||
double e = 1.0;
|
||||
if (is_scale) {
|
||||
e /= 255.0;
|
||||
}
|
||||
(*im).convertTo(*im, CV_32FC3, e);
|
||||
std::vector<cv::Mat> bgr_channels(3);
|
||||
cv::split(*im, bgr_channels);
|
||||
for (auto i = 0; i < bgr_channels.size(); i++) {
|
||||
bgr_channels[i].convertTo(bgr_channels[i], CV_32FC1, 1.0 * scale[i],
|
||||
(0.0 - mean[i]) * scale[i]);
|
||||
}
|
||||
cv::merge(bgr_channels, *im);
|
||||
}
|
||||
|
||||
void ResizeImgType0::Run(const cv::Mat &img, cv::Mat &resize_img,
|
||||
int max_size_len, float &ratio_h, float &ratio_w,
|
||||
bool use_tensorrt) {
|
||||
int w = img.cols;
|
||||
int h = img.rows;
|
||||
|
||||
float ratio = 1.f;
|
||||
int max_wh = w >= h ? w : h;
|
||||
if (max_wh > max_size_len) {
|
||||
if (h > w) {
|
||||
ratio = float(max_size_len) / float(h);
|
||||
} else {
|
||||
ratio = float(max_size_len) / float(w);
|
||||
}
|
||||
}
|
||||
|
||||
int resize_h = int(float(h) * ratio);
|
||||
int resize_w = int(float(w) * ratio);
|
||||
|
||||
resize_h = max(int(round(float(resize_h) / 32) * 32), 32);
|
||||
resize_w = max(int(round(float(resize_w) / 32) * 32), 32);
|
||||
|
||||
cv::resize(img, resize_img, cv::Size(resize_w, resize_h));
|
||||
ratio_h = float(resize_h) / float(h);
|
||||
ratio_w = float(resize_w) / float(w);
|
||||
}
|
||||
|
||||
void CrnnResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img, float wh_ratio,
|
||||
bool use_tensorrt,
|
||||
const std::vector<int> &rec_image_shape) {
|
||||
int imgC, imgH, imgW;
|
||||
imgC = rec_image_shape[0];
|
||||
imgH = rec_image_shape[1];
|
||||
imgW = rec_image_shape[2];
|
||||
|
||||
imgW = int(32 * wh_ratio);
|
||||
|
||||
float ratio = float(img.cols) / float(img.rows);
|
||||
int resize_w, resize_h;
|
||||
if (ceilf(imgH * ratio) > imgW)
|
||||
resize_w = imgW;
|
||||
else
|
||||
resize_w = int(ceilf(imgH * ratio));
|
||||
|
||||
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
|
||||
cv::INTER_LINEAR);
|
||||
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0,
|
||||
int(imgW - resize_img.cols), cv::BORDER_CONSTANT,
|
||||
{127, 127, 127});
|
||||
}
|
||||
|
||||
void ClsResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img,
|
||||
bool use_tensorrt,
|
||||
const std::vector<int> &rec_image_shape) {
|
||||
int imgC, imgH, imgW;
|
||||
imgC = rec_image_shape[0];
|
||||
imgH = rec_image_shape[1];
|
||||
imgW = rec_image_shape[2];
|
||||
|
||||
float ratio = float(img.cols) / float(img.rows);
|
||||
int resize_w, resize_h;
|
||||
if (ceilf(imgH * ratio) > imgW)
|
||||
resize_w = imgW;
|
||||
else
|
||||
resize_w = int(ceilf(imgH * ratio));
|
||||
|
||||
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
|
||||
cv::INTER_LINEAR);
|
||||
if (resize_w < imgW) {
|
||||
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0, imgW - resize_w,
|
||||
cv::BORDER_CONSTANT, cv::Scalar(0, 0, 0));
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace PaddleOCR
|
|
@ -0,0 +1,95 @@
|
|||
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <dirent.h>
|
||||
#include <include/utility.h>
|
||||
#include <iostream>
|
||||
#include <ostream>
|
||||
#include <sys/stat.h>
|
||||
#include <sys/types.h>
|
||||
#include <vector>
|
||||
|
||||
namespace PaddleOCR {
|
||||
|
||||
std::vector<std::string> Utility::ReadDict(const std::string &path) {
|
||||
std::ifstream in(path);
|
||||
std::string line;
|
||||
std::vector<std::string> m_vec;
|
||||
if (in) {
|
||||
while (getline(in, line)) {
|
||||
m_vec.push_back(line);
|
||||
}
|
||||
} else {
|
||||
std::cout << "no such label file: " << path << ", exit the program..."
|
||||
<< std::endl;
|
||||
exit(1);
|
||||
}
|
||||
return m_vec;
|
||||
}
|
||||
|
||||
void Utility::VisualizeBboxes(
|
||||
const cv::Mat &srcimg,
|
||||
const std::vector<std::vector<std::vector<int>>> &boxes) {
|
||||
cv::Mat img_vis;
|
||||
srcimg.copyTo(img_vis);
|
||||
for (int n = 0; n < boxes.size(); n++) {
|
||||
cv::Point rook_points[4];
|
||||
for (int m = 0; m < boxes[n].size(); m++) {
|
||||
rook_points[m] = cv::Point(int(boxes[n][m][0]), int(boxes[n][m][1]));
|
||||
}
|
||||
|
||||
const cv::Point *ppt[1] = {rook_points};
|
||||
int npt[] = {4};
|
||||
cv::polylines(img_vis, ppt, npt, 1, 1, CV_RGB(0, 255, 0), 2, 8, 0);
|
||||
}
|
||||
|
||||
cv::imwrite("./ocr_vis.png", img_vis);
|
||||
std::cout << "The detection visualized image saved in ./ocr_vis.png"
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
// list all files under a directory
|
||||
void Utility::GetAllFiles(const char *dir_name,
|
||||
std::vector<std::string> &all_inputs) {
|
||||
if (NULL == dir_name) {
|
||||
std::cout << " dir_name is null ! " << std::endl;
|
||||
return;
|
||||
}
|
||||
struct stat s;
|
||||
lstat(dir_name, &s);
|
||||
if (!S_ISDIR(s.st_mode)) {
|
||||
std::cout << "dir_name is not a valid directory !" << std::endl;
|
||||
all_inputs.push_back(dir_name);
|
||||
return;
|
||||
} else {
|
||||
struct dirent *filename; // return value for readdir()
|
||||
DIR *dir; // return value for opendir()
|
||||
dir = opendir(dir_name);
|
||||
if (NULL == dir) {
|
||||
std::cout << "Can not open dir " << dir_name << std::endl;
|
||||
return;
|
||||
}
|
||||
std::cout << "Successfully opened the dir !" << std::endl;
|
||||
while ((filename = readdir(dir)) != NULL) {
|
||||
if (strcmp(filename->d_name, ".") == 0 ||
|
||||
strcmp(filename->d_name, "..") == 0)
|
||||
continue;
|
||||
// img_dir + std::string("/") + all_inputs[0];
|
||||
all_inputs.push_back(dir_name + std::string("/") +
|
||||
std::string(filename->d_name));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace PaddleOCR
|
|
@ -1,7 +1,21 @@
|
|||
OPENCV_DIR=your_opencv_dir
|
||||
LIB_DIR=your_paddle_inference_dir
|
||||
CUDA_LIB_DIR=your_cuda_lib_dir
|
||||
CUDNN_LIB_DIR=your_cudnn_lib_dir
|
||||
set -o errexit
|
||||
|
||||
if [ $# != 1 ] ; then
|
||||
echo "USAGE: $0 MODE (one of ['det', 'rec', 'system'])"
|
||||
echo " e.g.: $0 system"
|
||||
exit 1;
|
||||
fi
|
||||
|
||||
# MODE be one of ['det', 'rec', 'system']
|
||||
MODE=$1
|
||||
cp CMakeLists_$MODE.txt CMakeLists.txt
|
||||
|
||||
|
||||
OPENCV_DIR=/paddle/git/new/PaddleOCR/deploy/cpp_infer/opencv-3.4.7/opencv3/
|
||||
LIB_DIR=/paddle/git/new/PaddleOCR/deploy/cpp_infer/paddle_inference/
|
||||
CUDA_LIB_DIR=/usr/local/cuda/lib64/
|
||||
CUDNN_LIB_DIR=/usr/lib/x86_64-linux-gnu/
|
||||
|
||||
|
||||
BUILD_DIR=build
|
||||
rm -rf ${BUILD_DIR}
|
||||
|
|
Loading…
Reference in New Issue