opt visualized func and add docker usage in cpu
This commit is contained in:
parent
fcfdd0a39e
commit
4af1810909
|
@ -15,6 +15,9 @@ cd /home/Projects
|
|||
# 首次运行需创建一个docker容器,再次运行时不需要运行当前命令
|
||||
# 创建一个名字为ppocr的docker容器,并将当前目录映射到容器的/paddle目录下
|
||||
|
||||
如果您希望在CPU环境下使用docker,使用docker而不是nvidia-docker创建docker
|
||||
sudo docker run --name ppocr -v $PWD:/paddle --network=host -it hub.baidubce.com/paddlepaddle/paddle:latest-gpu-cuda9.0-cudnn7-dev /bin/bash
|
||||
|
||||
如果您的机器安装的是CUDA9,请运行以下命令创建容器
|
||||
sudo nvidia-docker run --name ppocr -v $PWD:/paddle --network=host -it hub.baidubce.com/paddlepaddle/paddle:latest-gpu-cuda9.0-cudnn7-dev /bin/bash
|
||||
|
||||
|
@ -24,7 +27,7 @@ sudo nvidia-docker run --name ppocr -v $PWD:/paddle --network=host -it hub.baidu
|
|||
您也可以访问[DockerHub](https://hub.docker.com/r/paddlepaddle/paddle/tags/)获取与您机器适配的镜像。
|
||||
|
||||
# ctrl+P+Q可退出docker,重新进入docker使用如下命令
|
||||
sudo nvidia-docker container exec -it ppocr /bin/bash
|
||||
sudo docker container exec -it ppocr /bin/bash
|
||||
```
|
||||
|
||||
注意:如果docker pull过慢,可以按照如下步骤手动下载后加载docker,以cuda9 docker为例,使用cuda10 docker只需要将cuda9改为cuda10即可。
|
||||
|
|
|
@ -23,6 +23,7 @@ import cv2
|
|||
import numpy as np
|
||||
import json
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
import math
|
||||
|
||||
|
||||
def parse_args():
|
||||
|
@ -127,6 +128,18 @@ def resize_img(img, input_size=600):
|
|||
|
||||
|
||||
def draw_ocr(image, boxes, txts, scores, draw_txt=True, drop_score=0.5):
|
||||
"""
|
||||
Visualize the results of OCR detection and recognition
|
||||
args:
|
||||
image(Image): image from Image.open
|
||||
boxes(list): boxes with shape(N, 4, 2)
|
||||
txts(list): the texts
|
||||
scores(list): txxs corresponding scores
|
||||
draw_txt(bool): whether draw text or not
|
||||
drop_score(float): only scores greater than drop_threshold will be visualized
|
||||
return(array):
|
||||
the visualized img
|
||||
"""
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
|
||||
img = image.copy()
|
||||
|
@ -154,35 +167,123 @@ def draw_ocr(image, boxes, txts, scores, draw_txt=True, drop_score=0.5):
|
|||
fill='red')
|
||||
|
||||
if draw_txt:
|
||||
txt_color = (0, 0, 0)
|
||||
img = np.array(resize_img(img))
|
||||
_h = img.shape[0]
|
||||
blank_img = np.ones(shape=[_h, 600], dtype=np.int8) * 255
|
||||
blank_img = Image.fromarray(blank_img).convert("RGB")
|
||||
draw_txt = ImageDraw.Draw(blank_img)
|
||||
img = np.array(resize_img(img, input_size=600))
|
||||
txt_img = text_visual(
|
||||
txts, scores, img_h=img.shape[0], img_w=600, threshold=drop_score)
|
||||
img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
|
||||
|
||||
font_size = 20
|
||||
gap = 20
|
||||
title = "index text score"
|
||||
font = ImageFont.truetype(
|
||||
"./doc/simfang.ttf", font_size, encoding="utf-8")
|
||||
|
||||
draw_txt.text((20, 0), title, txt_color, font=font)
|
||||
count = 0
|
||||
for idx, txt in enumerate(txts):
|
||||
if scores[idx] < drop_score:
|
||||
continue
|
||||
font = ImageFont.truetype(
|
||||
"./doc/simfang.ttf", font_size, encoding="utf-8")
|
||||
new_txt = str(idx) + ': ' + txt + ' ' + '%.3f' % (scores[idx])
|
||||
draw_txt.text(
|
||||
(20, gap * (count + 1)), new_txt, txt_color, font=font)
|
||||
count += 1
|
||||
img = np.concatenate([np.array(img), np.array(blank_img)], axis=1)
|
||||
return img
|
||||
|
||||
|
||||
def str_count(s):
|
||||
"""
|
||||
Count the number of Chinese characters,
|
||||
a single English character and a single number
|
||||
equal to half the length of Chinese characters.
|
||||
|
||||
args:
|
||||
s(string): the input of string
|
||||
return(int):
|
||||
the number of Chinese characters
|
||||
"""
|
||||
import string
|
||||
count_zh = count_pu = 0
|
||||
s_len = len(s)
|
||||
en_dg_count = 0
|
||||
for c in s:
|
||||
if c in string.ascii_letters or c.isdigit() or c.isspace():
|
||||
en_dg_count += 1
|
||||
elif c.isalpha():
|
||||
count_zh += 1
|
||||
else:
|
||||
count_pu += 1
|
||||
return s_len - math.ceil(en_dg_count / 2)
|
||||
|
||||
|
||||
def text_visual(texts, scores, img_h=400, img_w=600, threshold=0.):
|
||||
"""
|
||||
create new blank img and draw txt on it
|
||||
args:
|
||||
texts(list): the text will be draw
|
||||
scores(list|None): corresponding score of each txt
|
||||
img_h(int): the height of blank img
|
||||
img_w(int): the width of blank img
|
||||
return(array):
|
||||
|
||||
"""
|
||||
if scores is not None:
|
||||
assert len(texts) == len(
|
||||
scores), "The number of txts and corresponding scores must match"
|
||||
|
||||
def create_blank_img():
|
||||
blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
|
||||
blank_img[:, img_w - 1:] = 0
|
||||
blank_img = Image.fromarray(blank_img).convert("RGB")
|
||||
draw_txt = ImageDraw.Draw(blank_img)
|
||||
return blank_img, draw_txt
|
||||
|
||||
blank_img, draw_txt = create_blank_img()
|
||||
|
||||
font_size = 20
|
||||
txt_color = (0, 0, 0)
|
||||
font = ImageFont.truetype(
|
||||
"../../doc/simfang.ttf", font_size, encoding="utf-8")
|
||||
|
||||
gap = font_size + 5
|
||||
txt_img_list = []
|
||||
count, index = 0, 0
|
||||
for idx, txt in enumerate(texts):
|
||||
index += 1
|
||||
if scores[idx] < threshold:
|
||||
index -= 1
|
||||
continue
|
||||
first_line = True
|
||||
while str_count(txt) >= img_w // font_size - 4:
|
||||
tmp = txt
|
||||
txt = tmp[:img_w // font_size - 4]
|
||||
if first_line:
|
||||
new_txt = str(index) + ': ' + txt
|
||||
first_line = False
|
||||
else:
|
||||
new_txt = ' ' + txt
|
||||
draw_txt.text((0, gap * (count + 1)), new_txt, txt_color, font=font)
|
||||
txt = tmp[img_w // font_size - 4:]
|
||||
count += 1
|
||||
if count >= img_h // gap - 1:
|
||||
txt_img_list.append(np.array(blank_img))
|
||||
blank_img, draw_txt = create_blank_img()
|
||||
count = 0
|
||||
|
||||
if first_line:
|
||||
new_txt = str(index) + ': ' + txt + ' ' + '%.3f' % (scores[idx])
|
||||
else:
|
||||
new_txt = " " + txt + " " + '%.3f' % (scores[idx])
|
||||
draw_txt.text((0, gap * (count + 1)), new_txt, txt_color, font=font)
|
||||
count += 1
|
||||
# whether add new blank img or not
|
||||
if count >= img_h // gap - 1 and idx + 1 < len(texts):
|
||||
txt_img_list.append(np.array(blank_img))
|
||||
blank_img, draw_txt = create_blank_img()
|
||||
count = 0
|
||||
|
||||
txt_img_list.append(np.array(blank_img))
|
||||
if len(txt_img_list) == 1:
|
||||
blank_img = np.array(txt_img_list[0])
|
||||
else:
|
||||
blank_img = np.concatenate(txt_img_list, axis=1)
|
||||
# cv2.imwrite("./draw_txt.jpg", np.array(blank_img))
|
||||
return np.array(blank_img)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
text = [
|
||||
"旨在打造一套丰富领先、且实用的工具库助力使、用者训练出更好的模型,并应用落地",
|
||||
"以下代码实现了文本检测、识别串联推理,在执行预测时,需要通过参数image_dir指定单张图像或者图像集合",
|
||||
"上述DB模型的训练和评估,需设置后处理参数box_thresh=0.6,unclip_ratio=1.5,使用不同数据集"
|
||||
]
|
||||
img = text_visual(text, scores=[0.999, 0.999, 0.999], img_h=100)
|
||||
cv2.imwrite("./draw_txt.jpg", np.array(img))
|
||||
"""
|
||||
test_img = "./doc/test_v2"
|
||||
predict_txt = "./doc/predict.txt"
|
||||
f = open(predict_txt, 'r')
|
||||
|
@ -202,3 +303,4 @@ if __name__ == '__main__':
|
|||
new_img = draw_ocr(image, boxes, txts, scores, draw_txt=True)
|
||||
|
||||
cv2.imwrite(img_name, new_img)
|
||||
"""
|
||||
|
|
Loading…
Reference in New Issue