Merge branch 'dygraph' into cherry-pick
This commit is contained in:
commit
4d55624f62
|
@ -13,7 +13,6 @@ inference 模型(`paddle.jit.save`保存的模型)
|
|||
- [检测模型转inference模型](#检测模型转inference模型)
|
||||
- [识别模型转inference模型](#识别模型转inference模型)
|
||||
- [方向分类模型转inference模型](#方向分类模型转inference模型)
|
||||
- [端到端模型转inference模型](#端到端模型转inference模型)
|
||||
|
||||
- [二、文本检测模型推理](#文本检测模型推理)
|
||||
- [1. 超轻量中文检测模型推理](#超轻量中文检测模型推理)
|
||||
|
@ -119,32 +118,6 @@ python3 tools/export_model.py -c configs/cls/cls_mv3.yml -o Global.pretrained_mo
|
|||
├── inference.pdiparams.info # 分类inference模型的参数信息,可忽略
|
||||
└── inference.pdmodel # 分类inference模型的program文件
|
||||
```
|
||||
<a name="端到端模型转inference模型"></a>
|
||||
### 端到端模型转inference模型
|
||||
|
||||
下载端到端模型:
|
||||
```
|
||||
wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_cls_train.tar -C ./ch_lite/
|
||||
```
|
||||
|
||||
端到端模型转inference模型与检测的方式相同,如下:
|
||||
```
|
||||
# -c 后面设置训练算法的yml配置文件
|
||||
# -o 配置可选参数
|
||||
# Global.pretrained_model 参数设置待转换的训练模型地址,不用添加文件后缀 .pdmodel,.pdopt或.pdparams。
|
||||
# Global.load_static_weights 参数需要设置为 False。
|
||||
# Global.save_inference_dir参数设置转换的模型将保存的地址。
|
||||
|
||||
python3 tools/export_model.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_cls_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/e2e/
|
||||
```
|
||||
|
||||
转换成功后,在目录下有三个文件:
|
||||
```
|
||||
/inference/e2e/
|
||||
├── inference.pdiparams # 分类inference模型的参数文件
|
||||
├── inference.pdiparams.info # 分类inference模型的参数信息,可忽略
|
||||
└── inference.pdmodel # 分类inference模型的program文件
|
||||
```
|
||||
|
||||
<a name="文本检测模型推理"></a>
|
||||
## 二、文本检测模型推理
|
||||
|
|
|
@ -26,6 +26,14 @@ PGNet算法细节详见[论文](https://www.aaai.org/AAAI21Papers/AAAI-2885.Wang
|
|||
![](../imgs_results/e2e_res_img293_pgnet.png)
|
||||
![](../imgs_results/e2e_res_img295_pgnet.png)
|
||||
|
||||
### 性能指标
|
||||
| |det_precision|det_recall|det_f_score|e2e_precision|e2e_recall|e2e_f_score|FPS (size=640)|下载链接|
|
||||
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
|
||||
|Paper|85.30|86.80|86.1|-|-|61.7|38.20|-|
|
||||
|Ours|87.03|82.48|84.69|61.71|58.43|60.03|62.61|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/en_server_pgnetA.tar)|
|
||||
|
||||
*note:PaddleOCR里的PGNet实现针对预测速度做了优化,在精度下降可接受范围内,可以显著提升端对端预测速度*
|
||||
|
||||
<a name="环境配置"></a>
|
||||
## 二、环境配置
|
||||
请先参考[快速安装](./installation.md)配置PaddleOCR运行环境。
|
||||
|
@ -170,10 +178,3 @@ python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/im
|
|||
可视化文本端到端结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'e2e_res'。结果示例如下:
|
||||
|
||||
![](../imgs_results/e2e_res_img623_pgnet.jpg)
|
||||
|
||||
#### (3). 性能指标
|
||||
| |det_precision|det_recall|det_f_score|e2e_precision|e2e_recall|e2e_f_score|FPS (size=640)|
|
||||
| --- | --- | --- | --- | --- | --- | --- | --- |
|
||||
|Paper|85.30|86.80|86.1|-|-|61.7|38.20|
|
||||
|Ours|87.03|82.48|84.69|61.71|58.43|60.03|62.61|
|
||||
*note:PaddleOCR里的PGNet实现针对预测速度做了优化,在精度下降可接受范围内,可以显著提升端对端预测速度*
|
||||
|
|
|
@ -23,6 +23,13 @@ The output of TBO and TCL can get text detection results after post-processing,
|
|||
The results of detection and recognition are as follows:
|
||||
![](../imgs_results/e2e_res_img293_pgnet.png)
|
||||
![](../imgs_results/e2e_res_img295_pgnet.png)
|
||||
### Performance
|
||||
| |det_precision|det_recall|det_f_score|e2e_precision|e2e_recall|e2e_f_score|FPS (size=640)|download|
|
||||
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
|
||||
|Paper|85.30|86.80|86.1|-|-|61.7|38.20|-|
|
||||
|Ours|87.03|82.48|84.69|61.71|58.43|60.03|62.61|[download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/en_server_pgnetA.tar)|
|
||||
|
||||
*note:PGNet in PaddleOCR optimizes the prediction speed, and can significantly improve the end-to-end prediction speed within the acceptable range of accuracy reduction*
|
||||
|
||||
<a name="Environment_Configuration"></a>
|
||||
## 2. Environment Configuration
|
||||
|
@ -173,9 +180,3 @@ python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/im
|
|||
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'e2e_res'. Examples of results are as follows:
|
||||
|
||||
![](../imgs_results/e2e_res_img623_pgnet.jpg)
|
||||
#### (3). Performance
|
||||
| |det_precision|det_recall|det_f_score|e2e_precision|e2e_recall|e2e_f_score|FPS (size=640)|
|
||||
| --- | --- | --- | --- | --- | --- | --- | --- |
|
||||
|Paper|85.30|86.80|86.1|-|-|61.7|38.20|
|
||||
|Ours|87.03|82.48|84.69|61.71|58.43|60.03|62.61|
|
||||
*note:PGNet in PaddleOCR optimizes the prediction speed, and can significantly improve the end-to-end prediction speed within the acceptable range of accuracy reduction*
|
||||
|
|
Loading…
Reference in New Issue