commit
52b40f36e5
|
@ -3,7 +3,7 @@ Global:
|
||||||
epoch_num: 1200
|
epoch_num: 1200
|
||||||
log_smooth_window: 20
|
log_smooth_window: 20
|
||||||
print_batch_step: 2
|
print_batch_step: 2
|
||||||
save_model_dir: ./output/20201010/
|
save_model_dir: ./output/db_mv3/
|
||||||
save_epoch_step: 1200
|
save_epoch_step: 1200
|
||||||
# evaluation is run every 5000 iterations after the 4000th iteration
|
# evaluation is run every 5000 iterations after the 4000th iteration
|
||||||
eval_batch_step: 8
|
eval_batch_step: 8
|
||||||
|
@ -66,9 +66,9 @@ Metric:
|
||||||
TRAIN:
|
TRAIN:
|
||||||
dataset:
|
dataset:
|
||||||
name: SimpleDataSet
|
name: SimpleDataSet
|
||||||
data_dir: /home/zhoujun20/detection/
|
data_dir: ./detection/
|
||||||
file_list:
|
file_list:
|
||||||
- /home/zhoujun20/detection/train_icdar2015_label.txt # dataset1
|
- ./detection/train_icdar2015_label.txt # dataset1
|
||||||
ratio_list: [1.0]
|
ratio_list: [1.0]
|
||||||
transforms:
|
transforms:
|
||||||
- DecodeImage: # load image
|
- DecodeImage: # load image
|
||||||
|
@ -103,14 +103,14 @@ TRAIN:
|
||||||
shuffle: True
|
shuffle: True
|
||||||
drop_last: False
|
drop_last: False
|
||||||
batch_size: 16
|
batch_size: 16
|
||||||
num_workers: 6
|
num_workers: 8
|
||||||
|
|
||||||
EVAL:
|
EVAL:
|
||||||
dataset:
|
dataset:
|
||||||
name: SimpleDataSet
|
name: SimpleDataSet
|
||||||
data_dir: /home/zhoujun20/detection/
|
data_dir: ./detection/
|
||||||
file_list:
|
file_list:
|
||||||
- /home/zhoujun20/detection/test_icdar2015_label.txt
|
- ./detection/test_icdar2015_label.txt
|
||||||
transforms:
|
transforms:
|
||||||
- DecodeImage: # load image
|
- DecodeImage: # load image
|
||||||
img_mode: BGR
|
img_mode: BGR
|
||||||
|
@ -130,4 +130,4 @@ EVAL:
|
||||||
shuffle: False
|
shuffle: False
|
||||||
drop_last: False
|
drop_last: False
|
||||||
batch_size: 1 # must be 1
|
batch_size: 1 # must be 1
|
||||||
num_workers: 6
|
num_workers: 8
|
|
@ -3,14 +3,14 @@ Global:
|
||||||
epoch_num: 1200
|
epoch_num: 1200
|
||||||
log_smooth_window: 20
|
log_smooth_window: 20
|
||||||
print_batch_step: 2
|
print_batch_step: 2
|
||||||
save_model_dir: ./output/20201010/
|
save_model_dir: ./output/20201015_r50/
|
||||||
save_epoch_step: 1200
|
save_epoch_step: 1200
|
||||||
# evaluation is run every 5000 iterations after the 4000th iteration
|
# evaluation is run every 5000 iterations after the 4000th iteration
|
||||||
eval_batch_step: 8
|
eval_batch_step: 8
|
||||||
# if pretrained_model is saved in static mode, load_static_weights must set to True
|
# if pretrained_model is saved in static mode, load_static_weights must set to True
|
||||||
load_static_weights: True
|
load_static_weights: True
|
||||||
cal_metric_during_train: False
|
cal_metric_during_train: False
|
||||||
pretrained_model: /home/zhoujun20/pretrain_models/MobileNetV3_large_x0_5_pretrained
|
pretrained_model: /home/zhoujun20/pretrain_models/ResNet50_vd_ssld_pretrained/
|
||||||
checkpoints: #./output/det_db_0.001_DiceLoss_256_pp_config_2.0b_4gpu/best_accuracy
|
checkpoints: #./output/det_db_0.001_DiceLoss_256_pp_config_2.0b_4gpu/best_accuracy
|
||||||
save_inference_dir:
|
save_inference_dir:
|
||||||
use_visualdl: True
|
use_visualdl: True
|
||||||
|
@ -102,7 +102,7 @@ TRAIN:
|
||||||
shuffle: True
|
shuffle: True
|
||||||
drop_last: False
|
drop_last: False
|
||||||
batch_size: 16
|
batch_size: 16
|
||||||
num_workers: 6
|
num_workers: 8
|
||||||
|
|
||||||
EVAL:
|
EVAL:
|
||||||
dataset:
|
dataset:
|
||||||
|
@ -129,4 +129,4 @@ EVAL:
|
||||||
shuffle: False
|
shuffle: False
|
||||||
drop_last: False
|
drop_last: False
|
||||||
batch_size: 1 # must be 1
|
batch_size: 1 # must be 1
|
||||||
num_workers: 6
|
num_workers: 8
|
|
@ -84,7 +84,7 @@ TRAIN:
|
||||||
batch_size: 256
|
batch_size: 256
|
||||||
shuffle: True
|
shuffle: True
|
||||||
drop_last: True
|
drop_last: True
|
||||||
num_workers: 6
|
num_workers: 8
|
||||||
|
|
||||||
EVAL:
|
EVAL:
|
||||||
dataset:
|
dataset:
|
||||||
|
@ -105,4 +105,4 @@ EVAL:
|
||||||
shuffle: False
|
shuffle: False
|
||||||
drop_last: False
|
drop_last: False
|
||||||
batch_size: 256
|
batch_size: 256
|
||||||
num_workers: 6
|
num_workers: 8
|
||||||
|
|
|
@ -83,7 +83,7 @@ TRAIN:
|
||||||
batch_size: 256
|
batch_size: 256
|
||||||
shuffle: True
|
shuffle: True
|
||||||
drop_last: True
|
drop_last: True
|
||||||
num_workers: 6
|
num_workers: 8
|
||||||
|
|
||||||
EVAL:
|
EVAL:
|
||||||
dataset:
|
dataset:
|
||||||
|
@ -103,4 +103,4 @@ EVAL:
|
||||||
shuffle: False
|
shuffle: False
|
||||||
drop_last: False
|
drop_last: False
|
||||||
batch_size: 256
|
batch_size: 256
|
||||||
num_workers: 6
|
num_workers: 8
|
||||||
|
|
|
@ -0,0 +1,105 @@
|
||||||
|
Global:
|
||||||
|
use_gpu: false
|
||||||
|
epoch_num: 500
|
||||||
|
log_smooth_window: 20
|
||||||
|
print_batch_step: 1
|
||||||
|
save_model_dir: ./output/rec/test/
|
||||||
|
save_epoch_step: 500
|
||||||
|
# evaluation is run every 5000 iterations after the 4000th iteration
|
||||||
|
eval_batch_step: 1016
|
||||||
|
# if pretrained_model is saved in static mode, load_static_weights must set to True
|
||||||
|
load_static_weights: True
|
||||||
|
cal_metric_during_train: True
|
||||||
|
pretrained_model:
|
||||||
|
checkpoints: #output/rec/rec_crnn/best_accuracy
|
||||||
|
save_inference_dir:
|
||||||
|
use_visualdl: True
|
||||||
|
infer_img: doc/imgs_words/ch/word_1.jpg
|
||||||
|
# for data or label process
|
||||||
|
max_text_length: 80
|
||||||
|
character_dict_path: /home/zhoujun20/rec/lmdb/dict.txt
|
||||||
|
character_type: 'en'
|
||||||
|
use_space_char: True
|
||||||
|
infer_mode: False
|
||||||
|
use_tps: False
|
||||||
|
|
||||||
|
|
||||||
|
Optimizer:
|
||||||
|
name: Adam
|
||||||
|
beta1: 0.9
|
||||||
|
beta2: 0.999
|
||||||
|
learning_rate:
|
||||||
|
name: Cosine
|
||||||
|
lr: 0.0005
|
||||||
|
warmup_epoch: 1
|
||||||
|
regularizer:
|
||||||
|
name: 'L2'
|
||||||
|
factor: 0.00001
|
||||||
|
|
||||||
|
Architecture:
|
||||||
|
type: rec
|
||||||
|
algorithm: CRNN
|
||||||
|
Transform:
|
||||||
|
Backbone:
|
||||||
|
name: MobileNetV3
|
||||||
|
scale: 0.5
|
||||||
|
model_name: small
|
||||||
|
small_stride: [ 1, 2, 2, 2 ]
|
||||||
|
Neck:
|
||||||
|
name: SequenceEncoder
|
||||||
|
encoder_type: reshape
|
||||||
|
Head:
|
||||||
|
name: CTC
|
||||||
|
fc_decay: 0.00001
|
||||||
|
|
||||||
|
Loss:
|
||||||
|
name: CTCLoss
|
||||||
|
|
||||||
|
PostProcess:
|
||||||
|
name: CTCLabelDecode
|
||||||
|
|
||||||
|
Metric:
|
||||||
|
name: RecMetric
|
||||||
|
main_indicator: acc
|
||||||
|
|
||||||
|
TRAIN:
|
||||||
|
dataset:
|
||||||
|
name: LMDBDateSet
|
||||||
|
file_list:
|
||||||
|
- /Users/zhoujun20/Downloads/evaluation_new # dataset1
|
||||||
|
ratio_list: [ 0.4,0.6 ]
|
||||||
|
transforms:
|
||||||
|
- DecodeImage: # load image
|
||||||
|
img_mode: BGR
|
||||||
|
channel_first: False
|
||||||
|
- CTCLabelEncode: # Class handling label
|
||||||
|
- RecAug:
|
||||||
|
- RecResizeImg:
|
||||||
|
image_shape: [ 3,32,320 ]
|
||||||
|
- keepKeys:
|
||||||
|
keep_keys: [ 'image','label','length' ] # dataloader将按照此顺序返回list
|
||||||
|
loader:
|
||||||
|
batch_size: 256
|
||||||
|
shuffle: True
|
||||||
|
drop_last: True
|
||||||
|
num_workers: 8
|
||||||
|
|
||||||
|
EVAL:
|
||||||
|
dataset:
|
||||||
|
name: LMDBDateSet
|
||||||
|
file_list:
|
||||||
|
- /home/zhoujun20/rec/lmdb/val
|
||||||
|
transforms:
|
||||||
|
- DecodeImage: # load image
|
||||||
|
img_mode: BGR
|
||||||
|
channel_first: False
|
||||||
|
- CTCLabelEncode: # Class handling label
|
||||||
|
- RecResizeImg:
|
||||||
|
image_shape: [ 3,32,320 ]
|
||||||
|
- keepKeys:
|
||||||
|
keep_keys: [ 'image','label','length' ] # dataloader将按照此顺序返回list
|
||||||
|
loader:
|
||||||
|
shuffle: False
|
||||||
|
drop_last: False
|
||||||
|
batch_size: 256
|
||||||
|
num_workers: 8
|
|
@ -42,7 +42,7 @@ Architecture:
|
||||||
Transform:
|
Transform:
|
||||||
Backbone:
|
Backbone:
|
||||||
name: ResNet
|
name: ResNet
|
||||||
layers: 200
|
layers: 34
|
||||||
Neck:
|
Neck:
|
||||||
name: SequenceEncoder
|
name: SequenceEncoder
|
||||||
encoder_type: fc
|
encoder_type: fc
|
||||||
|
@ -82,7 +82,7 @@ TRAIN:
|
||||||
batch_size: 256
|
batch_size: 256
|
||||||
shuffle: True
|
shuffle: True
|
||||||
drop_last: True
|
drop_last: True
|
||||||
num_workers: 6
|
num_workers: 8
|
||||||
|
|
||||||
EVAL:
|
EVAL:
|
||||||
dataset:
|
dataset:
|
||||||
|
@ -103,4 +103,4 @@ EVAL:
|
||||||
shuffle: False
|
shuffle: False
|
||||||
drop_last: False
|
drop_last: False
|
||||||
batch_size: 256
|
batch_size: 256
|
||||||
num_workers: 6
|
num_workers: 8
|
||||||
|
|
|
@ -94,13 +94,11 @@ def check_static():
|
||||||
from ppocr.utils.logging import get_logger
|
from ppocr.utils.logging import get_logger
|
||||||
from tools import program
|
from tools import program
|
||||||
|
|
||||||
config = program.load_config('configs/det/det_r50_vd_db.yml')
|
config = program.load_config('configs/rec/rec_r34_vd_none_bilstm_ctc.yml')
|
||||||
|
|
||||||
# import cv2
|
|
||||||
# data = cv2.imread('doc/imgs/1.jpg')
|
|
||||||
# data = normalize(data)
|
|
||||||
logger = get_logger()
|
logger = get_logger()
|
||||||
data = np.zeros((1, 3, 640, 640), dtype=np.float32)
|
np.random.seed(0)
|
||||||
|
data = np.random.rand(1, 3, 32, 320).astype(np.float32)
|
||||||
paddle.disable_static()
|
paddle.disable_static()
|
||||||
|
|
||||||
config['Architecture']['in_channels'] = 3
|
config['Architecture']['in_channels'] = 3
|
||||||
|
@ -110,17 +108,15 @@ def check_static():
|
||||||
load_dygraph_pretrain(
|
load_dygraph_pretrain(
|
||||||
model,
|
model,
|
||||||
logger,
|
logger,
|
||||||
'/Users/zhoujun20/Desktop/code/PaddleOCR/db/db',
|
'/Users/zhoujun20/Desktop/code/PaddleOCR/cnn_ctc/cnn_ctc',
|
||||||
load_static_weights=True)
|
load_static_weights=True)
|
||||||
x = paddle.to_variable(data)
|
x = paddle.to_tensor(data)
|
||||||
y = model(x)
|
y = model(x)
|
||||||
for y1 in y:
|
for y1 in y:
|
||||||
print(y1.shape)
|
print(y1.shape)
|
||||||
#
|
|
||||||
# # from matplotlib import pyplot as plt
|
static_out = np.load(
|
||||||
# # plt.imshow(y.numpy())
|
'/Users/zhoujun20/Desktop/code/PaddleOCR/output/conv.npy')
|
||||||
# # plt.show()
|
|
||||||
static_out = np.load('/Users/zhoujun20/Desktop/code/PaddleOCR/db/db.npy')
|
|
||||||
diff = y.numpy() - static_out
|
diff = y.numpy() - static_out
|
||||||
print(y.shape, static_out.shape, diff.mean())
|
print(y.shape, static_out.shape, diff.mean())
|
||||||
|
|
||||||
|
|
|
@ -16,143 +16,30 @@ from __future__ import absolute_import
|
||||||
from __future__ import division
|
from __future__ import division
|
||||||
from __future__ import print_function
|
from __future__ import print_function
|
||||||
|
|
||||||
from paddle import nn
|
import paddle
|
||||||
from paddle.nn import functional as F
|
|
||||||
from paddle import ParamAttr
|
from paddle import ParamAttr
|
||||||
|
import paddle.nn as nn
|
||||||
|
|
||||||
__all__ = ["ResNet"]
|
__all__ = ["ResNet"]
|
||||||
|
|
||||||
|
|
||||||
class ResNet(nn.Layer):
|
|
||||||
def __init__(self, in_channels=3, layers=50, **kwargs):
|
|
||||||
"""
|
|
||||||
the Resnet backbone network for detection module.
|
|
||||||
Args:
|
|
||||||
params(dict): the super parameters for network build
|
|
||||||
"""
|
|
||||||
super(ResNet, self).__init__()
|
|
||||||
supported_layers = {
|
|
||||||
18: {
|
|
||||||
'depth': [2, 2, 2, 2],
|
|
||||||
'block_class': BasicBlock
|
|
||||||
},
|
|
||||||
34: {
|
|
||||||
'depth': [3, 4, 6, 3],
|
|
||||||
'block_class': BasicBlock
|
|
||||||
},
|
|
||||||
50: {
|
|
||||||
'depth': [3, 4, 6, 3],
|
|
||||||
'block_class': BottleneckBlock
|
|
||||||
},
|
|
||||||
101: {
|
|
||||||
'depth': [3, 4, 23, 3],
|
|
||||||
'block_class': BottleneckBlock
|
|
||||||
},
|
|
||||||
152: {
|
|
||||||
'depth': [3, 8, 36, 3],
|
|
||||||
'block_class': BottleneckBlock
|
|
||||||
},
|
|
||||||
200: {
|
|
||||||
'depth': [3, 12, 48, 3],
|
|
||||||
'block_class': BottleneckBlock
|
|
||||||
}
|
|
||||||
}
|
|
||||||
assert layers in supported_layers, \
|
|
||||||
"supported layers are {} but input layer is {}".format(supported_layers.keys(), layers)
|
|
||||||
is_3x3 = True
|
|
||||||
|
|
||||||
depth = supported_layers[layers]['depth']
|
|
||||||
block_class = supported_layers[layers]['block_class']
|
|
||||||
|
|
||||||
num_filters = [64, 128, 256, 512]
|
|
||||||
|
|
||||||
conv = []
|
|
||||||
if is_3x3 == False:
|
|
||||||
conv.append(
|
|
||||||
ConvBNLayer(
|
|
||||||
in_channels=in_channels,
|
|
||||||
out_channels=64,
|
|
||||||
kernel_size=7,
|
|
||||||
stride=2,
|
|
||||||
act='relu'))
|
|
||||||
else:
|
|
||||||
conv.append(
|
|
||||||
ConvBNLayer(
|
|
||||||
in_channels=3,
|
|
||||||
out_channels=32,
|
|
||||||
kernel_size=3,
|
|
||||||
stride=2,
|
|
||||||
act='relu',
|
|
||||||
name='conv1_1'))
|
|
||||||
conv.append(
|
|
||||||
ConvBNLayer(
|
|
||||||
in_channels=32,
|
|
||||||
out_channels=32,
|
|
||||||
kernel_size=3,
|
|
||||||
stride=1,
|
|
||||||
act='relu',
|
|
||||||
name='conv1_2'))
|
|
||||||
conv.append(
|
|
||||||
ConvBNLayer(
|
|
||||||
in_channels=32,
|
|
||||||
out_channels=64,
|
|
||||||
kernel_size=3,
|
|
||||||
stride=1,
|
|
||||||
act='relu',
|
|
||||||
name='conv1_3'))
|
|
||||||
self.conv1 = nn.Sequential(*conv)
|
|
||||||
self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
|
||||||
self.stages = []
|
|
||||||
self.out_channels = []
|
|
||||||
in_ch = 64
|
|
||||||
for block_index in range(len(depth)):
|
|
||||||
block_list = []
|
|
||||||
for i in range(depth[block_index]):
|
|
||||||
if layers >= 50:
|
|
||||||
if layers in [101, 152, 200] and block_index == 2:
|
|
||||||
if i == 0:
|
|
||||||
conv_name = "res" + str(block_index + 2) + "a"
|
|
||||||
else:
|
|
||||||
conv_name = "res" + str(block_index +
|
|
||||||
2) + "b" + str(i)
|
|
||||||
else:
|
|
||||||
conv_name = "res" + str(block_index + 2) + chr(97 + i)
|
|
||||||
else:
|
|
||||||
conv_name = "res" + str(block_index + 2) + chr(97 + i)
|
|
||||||
block_list.append(
|
|
||||||
block_class(
|
|
||||||
in_channels=in_ch,
|
|
||||||
out_channels=num_filters[block_index],
|
|
||||||
stride=2 if i == 0 and block_index != 0 else 1,
|
|
||||||
if_first=block_index == i == 0,
|
|
||||||
name=conv_name))
|
|
||||||
in_ch = block_list[-1].out_channels
|
|
||||||
self.out_channels.append(in_ch)
|
|
||||||
self.stages.append(nn.Sequential(*block_list))
|
|
||||||
for i, stage in enumerate(self.stages):
|
|
||||||
self.add_sublayer(sublayer=stage, name="stage{}".format(i))
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
x = self.conv1(x)
|
|
||||||
x = self.pool(x)
|
|
||||||
out_list = []
|
|
||||||
for stage in self.stages:
|
|
||||||
x = stage(x)
|
|
||||||
out_list.append(x)
|
|
||||||
return out_list
|
|
||||||
|
|
||||||
|
|
||||||
class ConvBNLayer(nn.Layer):
|
class ConvBNLayer(nn.Layer):
|
||||||
def __init__(self,
|
def __init__(
|
||||||
in_channels,
|
self,
|
||||||
out_channels,
|
in_channels,
|
||||||
kernel_size,
|
out_channels,
|
||||||
stride=1,
|
kernel_size,
|
||||||
groups=1,
|
stride=1,
|
||||||
act=None,
|
groups=1,
|
||||||
name=None):
|
is_vd_mode=False,
|
||||||
|
act=None,
|
||||||
|
name=None, ):
|
||||||
super(ConvBNLayer, self).__init__()
|
super(ConvBNLayer, self).__init__()
|
||||||
self.conv = nn.Conv2d(
|
|
||||||
|
self.is_vd_mode = is_vd_mode
|
||||||
|
self._pool2d_avg = nn.AvgPool2d(
|
||||||
|
kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
||||||
|
self._conv = nn.Conv2d(
|
||||||
in_channels=in_channels,
|
in_channels=in_channels,
|
||||||
out_channels=out_channels,
|
out_channels=out_channels,
|
||||||
kernel_size=kernel_size,
|
kernel_size=kernel_size,
|
||||||
|
@ -165,87 +52,32 @@ class ConvBNLayer(nn.Layer):
|
||||||
bn_name = "bn_" + name
|
bn_name = "bn_" + name
|
||||||
else:
|
else:
|
||||||
bn_name = "bn" + name[3:]
|
bn_name = "bn" + name[3:]
|
||||||
self.bn = nn.BatchNorm(
|
self._batch_norm = nn.BatchNorm(
|
||||||
num_channels=out_channels,
|
out_channels,
|
||||||
act=act,
|
act=act,
|
||||||
param_attr=ParamAttr(name=bn_name + "_scale"),
|
param_attr=ParamAttr(name=bn_name + '_scale'),
|
||||||
bias_attr=ParamAttr(name=bn_name + "_offset"),
|
bias_attr=ParamAttr(bn_name + '_offset'),
|
||||||
moving_mean_name=bn_name + "_mean",
|
moving_mean_name=bn_name + '_mean',
|
||||||
moving_variance_name=bn_name + "_variance")
|
moving_variance_name=bn_name + '_variance')
|
||||||
|
|
||||||
def __call__(self, x):
|
def forward(self, inputs):
|
||||||
x = self.conv(x)
|
if self.is_vd_mode:
|
||||||
x = self.bn(x)
|
inputs = self._pool2d_avg(inputs)
|
||||||
return x
|
y = self._conv(inputs)
|
||||||
|
y = self._batch_norm(y)
|
||||||
|
return y
|
||||||
class ConvBNLayerNew(nn.Layer):
|
|
||||||
def __init__(self,
|
|
||||||
in_channels,
|
|
||||||
out_channels,
|
|
||||||
kernel_size,
|
|
||||||
stride=1,
|
|
||||||
groups=1,
|
|
||||||
act=None,
|
|
||||||
name=None):
|
|
||||||
super(ConvBNLayerNew, self).__init__()
|
|
||||||
self.pool = nn.AvgPool2d(
|
|
||||||
kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
|
||||||
|
|
||||||
self.conv = nn.Conv2d(
|
|
||||||
in_channels=in_channels,
|
|
||||||
out_channels=out_channels,
|
|
||||||
kernel_size=kernel_size,
|
|
||||||
stride=1,
|
|
||||||
padding=(kernel_size - 1) // 2,
|
|
||||||
groups=groups,
|
|
||||||
weight_attr=ParamAttr(name=name + "_weights"),
|
|
||||||
bias_attr=False)
|
|
||||||
if name == "conv1":
|
|
||||||
bn_name = "bn_" + name
|
|
||||||
else:
|
|
||||||
bn_name = "bn" + name[3:]
|
|
||||||
self.bn = nn.BatchNorm(
|
|
||||||
num_channels=out_channels,
|
|
||||||
act=act,
|
|
||||||
param_attr=ParamAttr(name=bn_name + "_scale"),
|
|
||||||
bias_attr=ParamAttr(name=bn_name + "_offset"),
|
|
||||||
moving_mean_name=bn_name + "_mean",
|
|
||||||
moving_variance_name=bn_name + "_variance")
|
|
||||||
|
|
||||||
def __call__(self, x):
|
|
||||||
x = self.pool(x)
|
|
||||||
x = self.conv(x)
|
|
||||||
x = self.bn(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class ShortCut(nn.Layer):
|
|
||||||
def __init__(self, in_channels, out_channels, stride, name, if_first=False):
|
|
||||||
super(ShortCut, self).__init__()
|
|
||||||
self.use_conv = True
|
|
||||||
if in_channels != out_channels or stride != 1:
|
|
||||||
if if_first:
|
|
||||||
self.conv = ConvBNLayer(
|
|
||||||
in_channels, out_channels, 1, stride, name=name)
|
|
||||||
else:
|
|
||||||
self.conv = ConvBNLayerNew(
|
|
||||||
in_channels, out_channels, 1, stride, name=name)
|
|
||||||
elif if_first:
|
|
||||||
self.conv = ConvBNLayer(
|
|
||||||
in_channels, out_channels, 1, stride, name=name)
|
|
||||||
else:
|
|
||||||
self.use_conv = False
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
if self.use_conv:
|
|
||||||
x = self.conv(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class BottleneckBlock(nn.Layer):
|
class BottleneckBlock(nn.Layer):
|
||||||
def __init__(self, in_channels, out_channels, stride, name, if_first):
|
def __init__(self,
|
||||||
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
stride,
|
||||||
|
shortcut=True,
|
||||||
|
if_first=False,
|
||||||
|
name=None):
|
||||||
super(BottleneckBlock, self).__init__()
|
super(BottleneckBlock, self).__init__()
|
||||||
|
|
||||||
self.conv0 = ConvBNLayer(
|
self.conv0 = ConvBNLayer(
|
||||||
in_channels=in_channels,
|
in_channels=in_channels,
|
||||||
out_channels=out_channels,
|
out_channels=out_channels,
|
||||||
|
@ -266,32 +98,46 @@ class BottleneckBlock(nn.Layer):
|
||||||
act=None,
|
act=None,
|
||||||
name=name + "_branch2c")
|
name=name + "_branch2c")
|
||||||
|
|
||||||
self.short = ShortCut(
|
if not shortcut:
|
||||||
in_channels=in_channels,
|
self.short = ConvBNLayer(
|
||||||
out_channels=out_channels * 4,
|
in_channels=in_channels,
|
||||||
stride=stride,
|
out_channels=out_channels * 4,
|
||||||
if_first=if_first,
|
kernel_size=1,
|
||||||
name=name + "_branch1")
|
stride=1,
|
||||||
self.out_channels = out_channels * 4
|
is_vd_mode=False if if_first else True,
|
||||||
|
name=name + "_branch1")
|
||||||
|
|
||||||
def forward(self, x):
|
self.shortcut = shortcut
|
||||||
y = self.conv0(x)
|
|
||||||
y = self.conv1(y)
|
def forward(self, inputs):
|
||||||
y = self.conv2(y)
|
y = self.conv0(inputs)
|
||||||
y = y + self.short(x)
|
conv1 = self.conv1(y)
|
||||||
y = F.relu(y)
|
conv2 = self.conv2(conv1)
|
||||||
|
|
||||||
|
if self.shortcut:
|
||||||
|
short = inputs
|
||||||
|
else:
|
||||||
|
short = self.short(inputs)
|
||||||
|
y = paddle.elementwise_add(x=short, y=conv2, act='relu')
|
||||||
return y
|
return y
|
||||||
|
|
||||||
|
|
||||||
class BasicBlock(nn.Layer):
|
class BasicBlock(nn.Layer):
|
||||||
def __init__(self, in_channels, out_channels, stride, name, if_first):
|
def __init__(self,
|
||||||
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
stride,
|
||||||
|
shortcut=True,
|
||||||
|
if_first=False,
|
||||||
|
name=None):
|
||||||
super(BasicBlock, self).__init__()
|
super(BasicBlock, self).__init__()
|
||||||
|
self.stride = stride
|
||||||
self.conv0 = ConvBNLayer(
|
self.conv0 = ConvBNLayer(
|
||||||
in_channels=in_channels,
|
in_channels=in_channels,
|
||||||
out_channels=out_channels,
|
out_channels=out_channels,
|
||||||
kernel_size=3,
|
kernel_size=3,
|
||||||
act='relu',
|
|
||||||
stride=stride,
|
stride=stride,
|
||||||
|
act='relu',
|
||||||
name=name + "_branch2a")
|
name=name + "_branch2a")
|
||||||
self.conv1 = ConvBNLayer(
|
self.conv1 = ConvBNLayer(
|
||||||
in_channels=out_channels,
|
in_channels=out_channels,
|
||||||
|
@ -299,31 +145,133 @@ class BasicBlock(nn.Layer):
|
||||||
kernel_size=3,
|
kernel_size=3,
|
||||||
act=None,
|
act=None,
|
||||||
name=name + "_branch2b")
|
name=name + "_branch2b")
|
||||||
self.short = ShortCut(
|
|
||||||
|
if not shortcut:
|
||||||
|
self.short = ConvBNLayer(
|
||||||
|
in_channels=in_channels,
|
||||||
|
out_channels=out_channels,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
is_vd_mode=False if if_first else True,
|
||||||
|
name=name + "_branch1")
|
||||||
|
|
||||||
|
self.shortcut = shortcut
|
||||||
|
|
||||||
|
def forward(self, inputs):
|
||||||
|
y = self.conv0(inputs)
|
||||||
|
conv1 = self.conv1(y)
|
||||||
|
|
||||||
|
if self.shortcut:
|
||||||
|
short = inputs
|
||||||
|
else:
|
||||||
|
short = self.short(inputs)
|
||||||
|
y = paddle.elementwise_add(x=short, y=conv1, act='relu')
|
||||||
|
return y
|
||||||
|
|
||||||
|
|
||||||
|
class ResNet(nn.Layer):
|
||||||
|
def __init__(self, in_channels=3, layers=50, **kwargs):
|
||||||
|
super(ResNet, self).__init__()
|
||||||
|
|
||||||
|
self.layers = layers
|
||||||
|
supported_layers = [18, 34, 50, 101, 152, 200]
|
||||||
|
assert layers in supported_layers, \
|
||||||
|
"supported layers are {} but input layer is {}".format(
|
||||||
|
supported_layers, layers)
|
||||||
|
|
||||||
|
if layers == 18:
|
||||||
|
depth = [2, 2, 2, 2]
|
||||||
|
elif layers == 34 or layers == 50:
|
||||||
|
depth = [3, 4, 6, 3]
|
||||||
|
elif layers == 101:
|
||||||
|
depth = [3, 4, 23, 3]
|
||||||
|
elif layers == 152:
|
||||||
|
depth = [3, 8, 36, 3]
|
||||||
|
elif layers == 200:
|
||||||
|
depth = [3, 12, 48, 3]
|
||||||
|
num_channels = [64, 256, 512,
|
||||||
|
1024] if layers >= 50 else [64, 64, 128, 256]
|
||||||
|
num_filters = [64, 128, 256, 512]
|
||||||
|
|
||||||
|
self.conv1_1 = ConvBNLayer(
|
||||||
in_channels=in_channels,
|
in_channels=in_channels,
|
||||||
out_channels=out_channels,
|
out_channels=32,
|
||||||
stride=stride,
|
kernel_size=3,
|
||||||
if_first=if_first,
|
stride=2,
|
||||||
name=name + "_branch1")
|
act='relu',
|
||||||
self.out_channels = out_channels
|
name="conv1_1")
|
||||||
|
self.conv1_2 = ConvBNLayer(
|
||||||
|
in_channels=32,
|
||||||
|
out_channels=32,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
act='relu',
|
||||||
|
name="conv1_2")
|
||||||
|
self.conv1_3 = ConvBNLayer(
|
||||||
|
in_channels=32,
|
||||||
|
out_channels=64,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
act='relu',
|
||||||
|
name="conv1_3")
|
||||||
|
self.pool2d_max = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||||
|
|
||||||
def forward(self, x):
|
self.stages = []
|
||||||
y = self.conv0(x)
|
self.out_channels = []
|
||||||
y = self.conv1(y)
|
if layers >= 50:
|
||||||
y = y + self.short(x)
|
for block in range(len(depth)):
|
||||||
return F.relu(y)
|
block_list = []
|
||||||
|
shortcut = False
|
||||||
|
for i in range(depth[block]):
|
||||||
|
if layers in [101, 152] and block == 2:
|
||||||
|
if i == 0:
|
||||||
|
conv_name = "res" + str(block + 2) + "a"
|
||||||
|
else:
|
||||||
|
conv_name = "res" + str(block + 2) + "b" + str(i)
|
||||||
|
else:
|
||||||
|
conv_name = "res" + str(block + 2) + chr(97 + i)
|
||||||
|
bottleneck_block = self.add_sublayer(
|
||||||
|
'bb_%d_%d' % (block, i),
|
||||||
|
BottleneckBlock(
|
||||||
|
in_channels=num_channels[block]
|
||||||
|
if i == 0 else num_filters[block] * 4,
|
||||||
|
out_channels=num_filters[block],
|
||||||
|
stride=2 if i == 0 and block != 0 else 1,
|
||||||
|
shortcut=shortcut,
|
||||||
|
if_first=block == i == 0,
|
||||||
|
name=conv_name))
|
||||||
|
shortcut = True
|
||||||
|
block_list.append(bottleneck_block)
|
||||||
|
self.out_channels.append(num_filters[block] * 4)
|
||||||
|
self.stages.append(nn.Sequential(*block_list))
|
||||||
|
else:
|
||||||
|
for block in range(len(depth)):
|
||||||
|
block_list = []
|
||||||
|
shortcut = False
|
||||||
|
for i in range(depth[block]):
|
||||||
|
conv_name = "res" + str(block + 2) + chr(97 + i)
|
||||||
|
basic_block = self.add_sublayer(
|
||||||
|
'bb_%d_%d' % (block, i),
|
||||||
|
BasicBlock(
|
||||||
|
in_channels=num_channels[block]
|
||||||
|
if i == 0 else num_filters[block],
|
||||||
|
out_channels=num_filters[block],
|
||||||
|
stride=2 if i == 0 and block != 0 else 1,
|
||||||
|
shortcut=shortcut,
|
||||||
|
if_first=block == i == 0,
|
||||||
|
name=conv_name))
|
||||||
|
shortcut = True
|
||||||
|
block_list.append(basic_block)
|
||||||
|
self.out_channels.append(num_filters[block])
|
||||||
|
self.stages.append(nn.Sequential(*block_list))
|
||||||
|
|
||||||
|
def forward(self, inputs):
|
||||||
if __name__ == '__main__':
|
y = self.conv1_1(inputs)
|
||||||
import paddle
|
y = self.conv1_2(y)
|
||||||
|
y = self.conv1_3(y)
|
||||||
paddle.disable_static()
|
y = self.pool2d_max(y)
|
||||||
x = paddle.zeros([1, 3, 640, 640])
|
out = []
|
||||||
x = paddle.to_variable(x)
|
for block in self.stages:
|
||||||
print(x.shape)
|
y = block(y)
|
||||||
net = ResNet(layers=18)
|
out.append(y)
|
||||||
y = net(x)
|
return out
|
||||||
|
|
||||||
for stage in y:
|
|
||||||
print(stage.shape)
|
|
||||||
# paddle.save(net.state_dict(),'1.pth')
|
|
||||||
|
|
|
@ -16,184 +16,34 @@ from __future__ import absolute_import
|
||||||
from __future__ import division
|
from __future__ import division
|
||||||
from __future__ import print_function
|
from __future__ import print_function
|
||||||
|
|
||||||
from paddle import nn, ParamAttr
|
import paddle
|
||||||
from paddle.nn import functional as F
|
from paddle import ParamAttr
|
||||||
|
import paddle.nn as nn
|
||||||
|
|
||||||
__all__ = ["ResNet"]
|
__all__ = ["ResNet"]
|
||||||
|
|
||||||
|
|
||||||
class ResNet(nn.Layer):
|
|
||||||
def __init__(self, in_channels=3, layers=34):
|
|
||||||
super(ResNet, self).__init__()
|
|
||||||
supported_layers = {
|
|
||||||
18: {
|
|
||||||
'depth': [2, 2, 2, 2],
|
|
||||||
'block_class': BasicBlock
|
|
||||||
},
|
|
||||||
34: {
|
|
||||||
'depth': [3, 4, 6, 3],
|
|
||||||
'block_class': BasicBlock
|
|
||||||
},
|
|
||||||
50: {
|
|
||||||
'depth': [3, 4, 6, 3],
|
|
||||||
'block_class': BottleneckBlock
|
|
||||||
},
|
|
||||||
101: {
|
|
||||||
'depth': [3, 4, 23, 3],
|
|
||||||
'block_class': BottleneckBlock
|
|
||||||
},
|
|
||||||
152: {
|
|
||||||
'depth': [3, 8, 36, 3],
|
|
||||||
'block_class': BottleneckBlock
|
|
||||||
},
|
|
||||||
200: {
|
|
||||||
'depth': [3, 12, 48, 3],
|
|
||||||
'block_class': BottleneckBlock
|
|
||||||
}
|
|
||||||
}
|
|
||||||
assert layers in supported_layers, \
|
|
||||||
"supported layers are {} but input layer is {}".format(supported_layers.keys(), layers)
|
|
||||||
is_3x3 = True
|
|
||||||
|
|
||||||
num_filters = [64, 128, 256, 512]
|
|
||||||
depth = supported_layers[layers]['depth']
|
|
||||||
block_class = supported_layers[layers]['block_class']
|
|
||||||
conv = []
|
|
||||||
if is_3x3 == False:
|
|
||||||
conv.append(
|
|
||||||
ConvBNLayer(
|
|
||||||
in_channels=in_channels,
|
|
||||||
out_channels=64,
|
|
||||||
kernel_size=7,
|
|
||||||
stride=1,
|
|
||||||
act='relu'))
|
|
||||||
else:
|
|
||||||
conv.append(
|
|
||||||
ConvBNLayer(
|
|
||||||
in_channels=in_channels,
|
|
||||||
out_channels=32,
|
|
||||||
kernel_size=3,
|
|
||||||
stride=1,
|
|
||||||
act='relu',
|
|
||||||
name='conv1_1'))
|
|
||||||
conv.append(
|
|
||||||
ConvBNLayer(
|
|
||||||
in_channels=32,
|
|
||||||
out_channels=32,
|
|
||||||
kernel_size=3,
|
|
||||||
stride=1,
|
|
||||||
act='relu',
|
|
||||||
name='conv1_2'))
|
|
||||||
conv.append(
|
|
||||||
ConvBNLayer(
|
|
||||||
in_channels=32,
|
|
||||||
out_channels=64,
|
|
||||||
kernel_size=3,
|
|
||||||
stride=1,
|
|
||||||
act='relu',
|
|
||||||
name='conv1_3'))
|
|
||||||
self.conv1 = nn.Sequential(*conv)
|
|
||||||
|
|
||||||
self.pool = nn.MaxPool2d(
|
|
||||||
kernel_size=3,
|
|
||||||
stride=2,
|
|
||||||
padding=1, )
|
|
||||||
|
|
||||||
block_list = []
|
|
||||||
in_ch = 64
|
|
||||||
for block_index in range(len(depth)):
|
|
||||||
for i in range(depth[block_index]):
|
|
||||||
if layers >= 50:
|
|
||||||
if layers in [101, 152, 200] and block_index == 2:
|
|
||||||
if i == 0:
|
|
||||||
conv_name = "res" + str(block_index + 2) + "a"
|
|
||||||
else:
|
|
||||||
conv_name = "res" + str(block_index +
|
|
||||||
2) + "b" + str(i)
|
|
||||||
else:
|
|
||||||
conv_name = "res" + str(block_index + 2) + chr(97 + i)
|
|
||||||
else:
|
|
||||||
conv_name = "res" + str(block_index + 2) + chr(97 + i)
|
|
||||||
if i == 0 and block_index != 0:
|
|
||||||
stride = (2, 1)
|
|
||||||
else:
|
|
||||||
stride = (1, 1)
|
|
||||||
block_list.append(
|
|
||||||
block_class(
|
|
||||||
in_channels=in_ch,
|
|
||||||
out_channels=num_filters[block_index],
|
|
||||||
stride=stride,
|
|
||||||
if_first=block_index == i == 0,
|
|
||||||
name=conv_name))
|
|
||||||
in_ch = block_list[-1].out_channels
|
|
||||||
self.block_list = nn.Sequential(*block_list)
|
|
||||||
self.add_sublayer(sublayer=self.block_list, name="block_list")
|
|
||||||
self.pool_out = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
|
|
||||||
self.out_channels = in_ch
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
x = self.conv1(x)
|
|
||||||
x = self.pool(x)
|
|
||||||
x = self.block_list(x)
|
|
||||||
x = self.pool_out(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class ConvBNLayer(nn.Layer):
|
class ConvBNLayer(nn.Layer):
|
||||||
def __init__(self,
|
def __init__(
|
||||||
in_channels,
|
self,
|
||||||
out_channels,
|
in_channels,
|
||||||
kernel_size,
|
out_channels,
|
||||||
stride=1,
|
kernel_size,
|
||||||
groups=1,
|
|
||||||
act=None,
|
|
||||||
name=None):
|
|
||||||
super(ConvBNLayer, self).__init__()
|
|
||||||
self.conv = nn.Conv2d(
|
|
||||||
in_channels=in_channels,
|
|
||||||
out_channels=out_channels,
|
|
||||||
kernel_size=kernel_size,
|
|
||||||
stride=stride,
|
|
||||||
padding=(kernel_size - 1) // 2,
|
|
||||||
groups=groups,
|
|
||||||
weight_attr=ParamAttr(name=name + "_weights"),
|
|
||||||
bias_attr=False)
|
|
||||||
if name == "conv1":
|
|
||||||
bn_name = "bn_" + name
|
|
||||||
else:
|
|
||||||
bn_name = "bn" + name[3:]
|
|
||||||
self.bn = nn.BatchNorm(
|
|
||||||
num_channels=out_channels,
|
|
||||||
act=act,
|
|
||||||
param_attr=ParamAttr(name=bn_name + "_scale"),
|
|
||||||
bias_attr=ParamAttr(name=bn_name + "_offset"),
|
|
||||||
moving_mean_name=bn_name + "_mean",
|
|
||||||
moving_variance_name=bn_name + "_variance")
|
|
||||||
|
|
||||||
def __call__(self, x):
|
|
||||||
x = self.conv(x)
|
|
||||||
x = self.bn(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class ConvBNLayerNew(nn.Layer):
|
|
||||||
def __init__(self,
|
|
||||||
in_channels,
|
|
||||||
out_channels,
|
|
||||||
kernel_size,
|
|
||||||
stride=1,
|
|
||||||
groups=1,
|
|
||||||
act=None,
|
|
||||||
name=None):
|
|
||||||
super(ConvBNLayerNew, self).__init__()
|
|
||||||
self.pool = nn.AvgPool2d(
|
|
||||||
kernel_size=stride, stride=stride, padding=0, ceil_mode=True)
|
|
||||||
|
|
||||||
self.conv = nn.Conv2d(
|
|
||||||
in_channels=in_channels,
|
|
||||||
out_channels=out_channels,
|
|
||||||
kernel_size=kernel_size,
|
|
||||||
stride=1,
|
stride=1,
|
||||||
|
groups=1,
|
||||||
|
is_vd_mode=False,
|
||||||
|
act=None,
|
||||||
|
name=None, ):
|
||||||
|
super(ConvBNLayer, self).__init__()
|
||||||
|
|
||||||
|
self.is_vd_mode = is_vd_mode
|
||||||
|
self._pool2d_avg = nn.AvgPool2d(
|
||||||
|
kernel_size=stride, stride=stride, padding=0, ceil_mode=True)
|
||||||
|
self._conv = nn.Conv2d(
|
||||||
|
in_channels=in_channels,
|
||||||
|
out_channels=out_channels,
|
||||||
|
kernel_size=kernel_size,
|
||||||
|
stride=1 if is_vd_mode else stride,
|
||||||
padding=(kernel_size - 1) // 2,
|
padding=(kernel_size - 1) // 2,
|
||||||
groups=groups,
|
groups=groups,
|
||||||
weight_attr=ParamAttr(name=name + "_weights"),
|
weight_attr=ParamAttr(name=name + "_weights"),
|
||||||
|
@ -202,48 +52,32 @@ class ConvBNLayerNew(nn.Layer):
|
||||||
bn_name = "bn_" + name
|
bn_name = "bn_" + name
|
||||||
else:
|
else:
|
||||||
bn_name = "bn" + name[3:]
|
bn_name = "bn" + name[3:]
|
||||||
self.bn = nn.BatchNorm(
|
self._batch_norm = nn.BatchNorm(
|
||||||
num_channels=out_channels,
|
out_channels,
|
||||||
act=act,
|
act=act,
|
||||||
param_attr=ParamAttr(name=bn_name + "_scale"),
|
param_attr=ParamAttr(name=bn_name + '_scale'),
|
||||||
bias_attr=ParamAttr(name=bn_name + "_offset"),
|
bias_attr=ParamAttr(bn_name + '_offset'),
|
||||||
moving_mean_name=bn_name + "_mean",
|
moving_mean_name=bn_name + '_mean',
|
||||||
moving_variance_name=bn_name + "_variance")
|
moving_variance_name=bn_name + '_variance')
|
||||||
|
|
||||||
def __call__(self, x):
|
def forward(self, inputs):
|
||||||
x = self.pool(x)
|
if self.is_vd_mode:
|
||||||
x = self.conv(x)
|
inputs = self._pool2d_avg(inputs)
|
||||||
x = self.bn(x)
|
y = self._conv(inputs)
|
||||||
return x
|
y = self._batch_norm(y)
|
||||||
|
return y
|
||||||
|
|
||||||
class ShortCut(nn.Layer):
|
|
||||||
def __init__(self, in_channels, out_channels, stride, name, if_first=False):
|
|
||||||
super(ShortCut, self).__init__()
|
|
||||||
self.use_conv = True
|
|
||||||
|
|
||||||
if in_channels != out_channels or stride[0] != 1:
|
|
||||||
if if_first:
|
|
||||||
self.conv = ConvBNLayer(
|
|
||||||
in_channels, out_channels, 1, stride, name=name)
|
|
||||||
else:
|
|
||||||
self.conv = ConvBNLayerNew(
|
|
||||||
in_channels, out_channels, 1, stride, name=name)
|
|
||||||
elif if_first:
|
|
||||||
self.conv = ConvBNLayer(
|
|
||||||
in_channels, out_channels, 1, stride, name=name)
|
|
||||||
else:
|
|
||||||
self.use_conv = False
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
if self.use_conv:
|
|
||||||
x = self.conv(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class BottleneckBlock(nn.Layer):
|
class BottleneckBlock(nn.Layer):
|
||||||
def __init__(self, in_channels, out_channels, stride, name, if_first):
|
def __init__(self,
|
||||||
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
stride,
|
||||||
|
shortcut=True,
|
||||||
|
if_first=False,
|
||||||
|
name=None):
|
||||||
super(BottleneckBlock, self).__init__()
|
super(BottleneckBlock, self).__init__()
|
||||||
|
|
||||||
self.conv0 = ConvBNLayer(
|
self.conv0 = ConvBNLayer(
|
||||||
in_channels=in_channels,
|
in_channels=in_channels,
|
||||||
out_channels=out_channels,
|
out_channels=out_channels,
|
||||||
|
@ -264,32 +98,47 @@ class BottleneckBlock(nn.Layer):
|
||||||
act=None,
|
act=None,
|
||||||
name=name + "_branch2c")
|
name=name + "_branch2c")
|
||||||
|
|
||||||
self.short = ShortCut(
|
if not shortcut:
|
||||||
in_channels=in_channels,
|
self.short = ConvBNLayer(
|
||||||
out_channels=out_channels * 4,
|
in_channels=in_channels,
|
||||||
stride=stride,
|
out_channels=out_channels * 4,
|
||||||
if_first=if_first,
|
kernel_size=1,
|
||||||
name=name + "_branch1")
|
stride=stride,
|
||||||
self.out_channels = out_channels * 4
|
is_vd_mode=not if_first and stride[0] != 1,
|
||||||
|
name=name + "_branch1")
|
||||||
|
|
||||||
def forward(self, x):
|
self.shortcut = shortcut
|
||||||
y = self.conv0(x)
|
|
||||||
y = self.conv1(y)
|
def forward(self, inputs):
|
||||||
y = self.conv2(y)
|
y = self.conv0(inputs)
|
||||||
y = y + self.short(x)
|
|
||||||
y = F.relu(y)
|
conv1 = self.conv1(y)
|
||||||
|
conv2 = self.conv2(conv1)
|
||||||
|
|
||||||
|
if self.shortcut:
|
||||||
|
short = inputs
|
||||||
|
else:
|
||||||
|
short = self.short(inputs)
|
||||||
|
y = paddle.elementwise_add(x=short, y=conv2, act='relu')
|
||||||
return y
|
return y
|
||||||
|
|
||||||
|
|
||||||
class BasicBlock(nn.Layer):
|
class BasicBlock(nn.Layer):
|
||||||
def __init__(self, in_channels, out_channels, stride, name, if_first):
|
def __init__(self,
|
||||||
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
stride,
|
||||||
|
shortcut=True,
|
||||||
|
if_first=False,
|
||||||
|
name=None):
|
||||||
super(BasicBlock, self).__init__()
|
super(BasicBlock, self).__init__()
|
||||||
|
self.stride = stride
|
||||||
self.conv0 = ConvBNLayer(
|
self.conv0 = ConvBNLayer(
|
||||||
in_channels=in_channels,
|
in_channels=in_channels,
|
||||||
out_channels=out_channels,
|
out_channels=out_channels,
|
||||||
kernel_size=3,
|
kernel_size=3,
|
||||||
act='relu',
|
|
||||||
stride=stride,
|
stride=stride,
|
||||||
|
act='relu',
|
||||||
name=name + "_branch2a")
|
name=name + "_branch2a")
|
||||||
self.conv1 = ConvBNLayer(
|
self.conv1 = ConvBNLayer(
|
||||||
in_channels=out_channels,
|
in_channels=out_channels,
|
||||||
|
@ -297,16 +146,138 @@ class BasicBlock(nn.Layer):
|
||||||
kernel_size=3,
|
kernel_size=3,
|
||||||
act=None,
|
act=None,
|
||||||
name=name + "_branch2b")
|
name=name + "_branch2b")
|
||||||
self.short = ShortCut(
|
|
||||||
in_channels=in_channels,
|
|
||||||
out_channels=out_channels,
|
|
||||||
stride=stride,
|
|
||||||
if_first=if_first,
|
|
||||||
name=name + "_branch1")
|
|
||||||
self.out_channels = out_channels
|
|
||||||
|
|
||||||
def forward(self, x):
|
if not shortcut:
|
||||||
y = self.conv0(x)
|
self.short = ConvBNLayer(
|
||||||
y = self.conv1(y)
|
in_channels=in_channels,
|
||||||
y = y + self.short(x)
|
out_channels=out_channels,
|
||||||
return F.relu(y)
|
kernel_size=1,
|
||||||
|
stride=stride,
|
||||||
|
is_vd_mode=not if_first and stride[0] != 1,
|
||||||
|
name=name + "_branch1")
|
||||||
|
|
||||||
|
self.shortcut = shortcut
|
||||||
|
|
||||||
|
def forward(self, inputs):
|
||||||
|
y = self.conv0(inputs)
|
||||||
|
conv1 = self.conv1(y)
|
||||||
|
|
||||||
|
if self.shortcut:
|
||||||
|
short = inputs
|
||||||
|
else:
|
||||||
|
short = self.short(inputs)
|
||||||
|
y = paddle.elementwise_add(x=short, y=conv1, act='relu')
|
||||||
|
return y
|
||||||
|
|
||||||
|
|
||||||
|
class ResNet(nn.Layer):
|
||||||
|
def __init__(self, in_channels=3, layers=50, **kwargs):
|
||||||
|
super(ResNet, self).__init__()
|
||||||
|
|
||||||
|
self.layers = layers
|
||||||
|
supported_layers = [18, 34, 50, 101, 152, 200]
|
||||||
|
assert layers in supported_layers, \
|
||||||
|
"supported layers are {} but input layer is {}".format(
|
||||||
|
supported_layers, layers)
|
||||||
|
|
||||||
|
if layers == 18:
|
||||||
|
depth = [2, 2, 2, 2]
|
||||||
|
elif layers == 34 or layers == 50:
|
||||||
|
depth = [3, 4, 6, 3]
|
||||||
|
elif layers == 101:
|
||||||
|
depth = [3, 4, 23, 3]
|
||||||
|
elif layers == 152:
|
||||||
|
depth = [3, 8, 36, 3]
|
||||||
|
elif layers == 200:
|
||||||
|
depth = [3, 12, 48, 3]
|
||||||
|
num_channels = [64, 256, 512,
|
||||||
|
1024] if layers >= 50 else [64, 64, 128, 256]
|
||||||
|
num_filters = [64, 128, 256, 512]
|
||||||
|
|
||||||
|
self.conv1_1 = ConvBNLayer(
|
||||||
|
in_channels=in_channels,
|
||||||
|
out_channels=32,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
act='relu',
|
||||||
|
name="conv1_1")
|
||||||
|
self.conv1_2 = ConvBNLayer(
|
||||||
|
in_channels=32,
|
||||||
|
out_channels=32,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
act='relu',
|
||||||
|
name="conv1_2")
|
||||||
|
self.conv1_3 = ConvBNLayer(
|
||||||
|
in_channels=32,
|
||||||
|
out_channels=64,
|
||||||
|
kernel_size=3,
|
||||||
|
stride=1,
|
||||||
|
act='relu',
|
||||||
|
name="conv1_3")
|
||||||
|
self.pool2d_max = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||||
|
|
||||||
|
self.block_list = []
|
||||||
|
if layers >= 50:
|
||||||
|
for block in range(len(depth)):
|
||||||
|
shortcut = False
|
||||||
|
for i in range(depth[block]):
|
||||||
|
if layers in [101, 152, 200] and block == 2:
|
||||||
|
if i == 0:
|
||||||
|
conv_name = "res" + str(block + 2) + "a"
|
||||||
|
else:
|
||||||
|
conv_name = "res" + str(block + 2) + "b" + str(i)
|
||||||
|
else:
|
||||||
|
conv_name = "res" + str(block + 2) + chr(97 + i)
|
||||||
|
|
||||||
|
if i == 0 and block != 0:
|
||||||
|
stride = (2, 1)
|
||||||
|
else:
|
||||||
|
stride = (1, 1)
|
||||||
|
bottleneck_block = self.add_sublayer(
|
||||||
|
'bb_%d_%d' % (block, i),
|
||||||
|
BottleneckBlock(
|
||||||
|
in_channels=num_channels[block]
|
||||||
|
if i == 0 else num_filters[block] * 4,
|
||||||
|
out_channels=num_filters[block],
|
||||||
|
stride=stride,
|
||||||
|
shortcut=shortcut,
|
||||||
|
if_first=block == i == 0,
|
||||||
|
name=conv_name))
|
||||||
|
shortcut = True
|
||||||
|
self.block_list.append(bottleneck_block)
|
||||||
|
self.out_channels = num_filters[block]
|
||||||
|
else:
|
||||||
|
for block in range(len(depth)):
|
||||||
|
shortcut = False
|
||||||
|
for i in range(depth[block]):
|
||||||
|
conv_name = "res" + str(block + 2) + chr(97 + i)
|
||||||
|
if i == 0 and block != 0:
|
||||||
|
stride = (2, 1)
|
||||||
|
else:
|
||||||
|
stride = (1, 1)
|
||||||
|
|
||||||
|
basic_block = self.add_sublayer(
|
||||||
|
'bb_%d_%d' % (block, i),
|
||||||
|
BasicBlock(
|
||||||
|
in_channels=num_channels[block]
|
||||||
|
if i == 0 else num_filters[block],
|
||||||
|
out_channels=num_filters[block],
|
||||||
|
stride=stride,
|
||||||
|
shortcut=shortcut,
|
||||||
|
if_first=block == i == 0,
|
||||||
|
name=conv_name))
|
||||||
|
shortcut = True
|
||||||
|
self.block_list.append(basic_block)
|
||||||
|
self.out_channels = num_filters[block]
|
||||||
|
self.out_pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
|
||||||
|
|
||||||
|
def forward(self, inputs):
|
||||||
|
y = self.conv1_1(inputs)
|
||||||
|
y = self.conv1_2(y)
|
||||||
|
y = self.conv1_3(y)
|
||||||
|
y = self.pool2d_max(y)
|
||||||
|
for block in self.block_list:
|
||||||
|
y = block(y)
|
||||||
|
y = self.out_pool(y)
|
||||||
|
return y
|
||||||
|
|
|
@ -116,7 +116,7 @@ class EncoderWithFC(nn.Layer):
|
||||||
|
|
||||||
|
|
||||||
class SequenceEncoder(nn.Layer):
|
class SequenceEncoder(nn.Layer):
|
||||||
def __init__(self, in_channels, encoder_type, hidden_size, **kwargs):
|
def __init__(self, in_channels, encoder_type, hidden_size=48, **kwargs):
|
||||||
super(SequenceEncoder, self).__init__()
|
super(SequenceEncoder, self).__init__()
|
||||||
self.encoder_reshape = EncoderWithReshape(in_channels)
|
self.encoder_reshape = EncoderWithReshape(in_channels)
|
||||||
self.out_channels = self.encoder_reshape.out_channels
|
self.out_channels = self.encoder_reshape.out_channels
|
||||||
|
|
|
@ -88,20 +88,23 @@ def main(config, device, logger, vdl_writer):
|
||||||
best_model_dict, logger, vdl_writer)
|
best_model_dict, logger, vdl_writer)
|
||||||
|
|
||||||
|
|
||||||
def test_reader(config, place, logger):
|
def test_reader(config, place, logger, global_config):
|
||||||
train_loader = build_dataloader(config['TRAIN'], place)
|
train_loader, _ = build_dataloader(
|
||||||
|
config['TRAIN'], place, global_config=global_config)
|
||||||
import time
|
import time
|
||||||
starttime = time.time()
|
starttime = time.time()
|
||||||
count = 0
|
count = 0
|
||||||
try:
|
try:
|
||||||
for data in train_loader():
|
for data in train_loader:
|
||||||
count += 1
|
count += 1
|
||||||
if count % 1 == 0:
|
if count % 1 == 0:
|
||||||
batch_time = time.time() - starttime
|
batch_time = time.time() - starttime
|
||||||
starttime = time.time()
|
starttime = time.time()
|
||||||
logger.info("reader: {}, {}, {}".format(count,
|
logger.info("reader: {}, {}, {}".format(
|
||||||
len(data), batch_time))
|
count, len(data[0]), batch_time))
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
|
import traceback
|
||||||
|
traceback.print_exc()
|
||||||
logger.info(e)
|
logger.info(e)
|
||||||
logger.info("finish reader: {}, Success!".format(count))
|
logger.info("finish reader: {}, Success!".format(count))
|
||||||
|
|
||||||
|
@ -130,7 +133,7 @@ def dis_main():
|
||||||
device))
|
device))
|
||||||
|
|
||||||
main(config, device, logger, vdl_writer)
|
main(config, device, logger, vdl_writer)
|
||||||
# test_reader(config, place, logger)
|
# test_reader(config, device, logger, config['Global'])
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
Loading…
Reference in New Issue