Merge remote-tracking branch 'origin/tree_doc' into tree_doc
# Conflicts: # doc/doc_ch/config.md # doc/doc_en/config_en.md
This commit is contained in:
commit
53d4eab6cd
|
@ -11,7 +11,7 @@ Global:
|
|||
load_static_weights: True
|
||||
cal_metric_during_train: False
|
||||
pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
|
||||
checkpoints: #./output/det_db_0.001_DiceLoss_256_pp_config_2.0b_4gpu/best_accuracy
|
||||
checkpoints:
|
||||
save_inference_dir:
|
||||
use_visualdl: False
|
||||
infer_img: doc/imgs_en/img_10.jpg
|
||||
|
|
|
@ -11,7 +11,7 @@ Global:
|
|||
load_static_weights: True
|
||||
cal_metric_during_train: False
|
||||
pretrained_model: ./pretrain_models/ResNet18_vd_pretrained
|
||||
checkpoints: #./output/det_db_0.001_DiceLoss_256_pp_config_2.0b_4gpu/best_accuracy
|
||||
checkpoints:
|
||||
save_inference_dir:
|
||||
use_visualdl: False
|
||||
infer_img: doc/imgs_en/img_10.jpg
|
||||
|
|
|
@ -11,7 +11,7 @@ Global:
|
|||
load_static_weights: True
|
||||
cal_metric_during_train: False
|
||||
pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
|
||||
checkpoints: #./output/det_db_0.001_DiceLoss_256_pp_config_2.0b_4gpu/best_accuracy
|
||||
checkpoints:
|
||||
save_inference_dir:
|
||||
use_visualdl: False
|
||||
infer_img: doc/imgs_en/img_10.jpg
|
||||
|
|
|
@ -10,14 +10,14 @@
|
|||
|
||||
## 配置文件参数介绍
|
||||
|
||||
以 `rec_chinese_lite_train_v1.1.yml ` 为例
|
||||
以 `rec_chinese_lite_train_v2.0.yml ` 为例
|
||||
### Global
|
||||
|
||||
| 字段 | 用途 | 默认值 | 备注 |
|
||||
| :----------------------: | :---------------------: | :--------------: | :--------------------: |
|
||||
| use_gpu | 设置代码是否在gpu运行 | true | \ |
|
||||
| epoch_num | 最大训练epoch数 | 500 | \ |
|
||||
| log_smooth_window | 滑动窗口大小 | 20 | \ |
|
||||
| log_smooth_window | log队列长度,每次打印输出队列里的中间值 | 20 | \ |
|
||||
| print_batch_step | 设置打印log间隔 | 10 | \ |
|
||||
| save_model_dir | 设置模型保存路径 | output/{算法名称} | \ |
|
||||
| save_epoch_step | 设置模型保存间隔 | 3 | \ |
|
||||
|
|
|
@ -186,7 +186,7 @@ python3 tools/infer/predict_det.py --det_algorithm="EAST" --image_dir="./doc/img
|
|||
```
|
||||
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
|
||||
|
||||
![](../imgs_results/det_res_img_10_east.jpg)
|
||||
(coming soon)
|
||||
|
||||
**注意**:本代码库中,EAST后处理Locality-Aware NMS有python和c++两种版本,c++版速度明显快于python版。由于c++版本nms编译版本问题,只有python3.5环境下会调用c++版nms,其他情况将调用python版nms。
|
||||
|
||||
|
@ -205,7 +205,7 @@ python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/img
|
|||
```
|
||||
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
|
||||
|
||||
![](../imgs_results/det_res_img_10_sast.jpg)
|
||||
(coming soon)
|
||||
|
||||
#### (2). 弯曲文本检测模型(Total-Text)
|
||||
首先将SAST文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在Total-Text英文数据集训练的模型为例([模型下载地址(coming soon)](link)),可以使用如下命令进行转换:
|
||||
|
@ -221,7 +221,7 @@ python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/img
|
|||
```
|
||||
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
|
||||
|
||||
![](../imgs_results/det_res_img623_sast.jpg)
|
||||
(coming soon)
|
||||
|
||||
**注意**:本代码库中,SAST后处理Locality-Aware NMS有python和c++两种版本,c++版速度明显快于python版。由于c++版本nms编译版本问题,只有python3.5环境下会调用c++版nms,其他情况将调用python版nms。
|
||||
|
||||
|
@ -245,15 +245,16 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/ch/word_4.jpg"
|
|||
|
||||
执行命令后,上面图像的预测结果(识别的文本和得分)会打印到屏幕上,示例如下:
|
||||
|
||||
Predicts of ./doc/imgs_words/ch/word_4.jpg:['实力活力', 0.89552695]
|
||||
|
||||
```bash
|
||||
Predicts of ./doc/imgs_words/ch/word_4.jpg:('实力活力', 0.98458153)
|
||||
```
|
||||
|
||||
<a name="基于CTC损失的识别模型推理"></a>
|
||||
### 2. 基于CTC损失的识别模型推理
|
||||
|
||||
我们以 CRNN 为例,介绍基于CTC损失的识别模型推理。 Rosetta 使用方式类似,不用设置识别算法参数rec_algorithm。
|
||||
|
||||
首先将 Rosetta 文本识别训练过程中保存的模型,转换成inference model。以基于Resnet34_vd骨干网络,使用MJSynth和SynthText两个英文文本识别合成数据集训练
|
||||
首先将 CRNN 文本识别训练过程中保存的模型,转换成inference model。以基于Resnet34_vd骨干网络,使用MJSynth和SynthText两个英文文本识别合成数据集训练
|
||||
的模型为例( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar) ),可以使用如下命令进行转换:
|
||||
|
||||
```
|
||||
|
@ -261,7 +262,7 @@ python3 tools/export_model.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml -o G
|
|||
|
||||
```
|
||||
|
||||
STAR-Net文本识别模型推理,可以执行如下命令:
|
||||
CRNN 文本识别模型推理,可以执行如下命令:
|
||||
|
||||
```
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/rec_crnn/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
|
||||
|
@ -281,7 +282,9 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png
|
|||
|
||||
执行命令后,上面图像的识别结果如下:
|
||||
|
||||
Predicts of ./doc/imgs_words_en/word_336.png:['super', 0.9999555]
|
||||
```bash
|
||||
Predicts of ./doc/imgs_words_en/word_336.png:('super', 0.9999073)
|
||||
```
|
||||
|
||||
**注意**:由于上述模型是参考[DTRB](https://arxiv.org/abs/1904.01906)文本识别训练和评估流程,与超轻量级中文识别模型训练有两方面不同:
|
||||
|
||||
|
@ -295,10 +298,10 @@ dict_character = list(self.character_str)
|
|||
```
|
||||
|
||||
### 4. 自定义文本识别字典的推理
|
||||
如果训练时修改了文本的字典,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径
|
||||
如果训练时修改了文本的字典,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径,并且设置 `rec_char_type=ch`
|
||||
|
||||
```
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="en" --rec_char_dict_path="your text dict path"
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="ch" --rec_char_dict_path="your text dict path"
|
||||
```
|
||||
|
||||
<a name="多语言模型的推理"></a>
|
||||
|
@ -313,9 +316,7 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" -
|
|||
|
||||
执行命令后,上图的预测结果为:
|
||||
``` text
|
||||
2020-09-19 16:15:05,076-INFO: index: [205 206 38 39]
|
||||
2020-09-19 16:15:05,077-INFO: word : 바탕으로
|
||||
2020-09-19 16:15:05,077-INFO: score: 0.9171358942985535
|
||||
Predicts of ./doc/imgs_words/korean/1.jpg:('바탕으로', 0.9948904)
|
||||
```
|
||||
|
||||
<a name="方向分类模型推理"></a>
|
||||
|
@ -378,4 +379,4 @@ python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_10.jpg" --d
|
|||
|
||||
执行命令后,识别结果图像如下:
|
||||
|
||||
![](../imgs_results/img_10.jpg)
|
||||
(coming soon)
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
## OCR模型列表(V1.1,9月22日更新)
|
||||
## OCR模型列表(V2.0,2020年12月12日更新)
|
||||
|
||||
- [一、文本检测模型](#文本检测模型)
|
||||
- [二、文本识别模型](#文本识别模型)
|
||||
|
@ -10,19 +10,20 @@
|
|||
PaddleOCR提供的可下载模型包括`推理模型`、`训练模型`、`预训练模型`、`slim模型`,模型区别说明如下:
|
||||
|
||||
|模型类型|模型格式|简介|
|
||||
|-|-|-|
|
||||
|推理模型|model、params|用于python预测引擎推理,[详情](./inference.md)|
|
||||
|训练模型、预训练模型|\*.pdmodel、\*.pdopt、\*.pdparams|训练过程中保存的checkpoints模型,保存的是模型的参数,多用于模型指标评估和恢复训练|
|
||||
|--- | --- | --- |
|
||||
|推理模型|inference.pdmodel、inference.pdiparams|用于python预测引擎推理,[详情](./inference.md)|
|
||||
|训练模型、预训练模型|\*.pdparams、\*.pdopt、\*.states |训练过程中保存的模型的参数、优化器状态和训练中间信息,多用于模型指标评估和恢复训练|
|
||||
|slim模型|\*.nb|用于lite部署|
|
||||
|
||||
|
||||
<a name="文本检测模型"></a>
|
||||
### 一、文本检测模型
|
||||
|
||||
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
|
||||
|-|-|-|-|-|
|
||||
|ch_ppocr_mobile_slim_v1.1_det|slim裁剪版超轻量模型,支持中英文、多语种文本检测|[det_mv3_db_v1.1.yml](../../configs/det/det_mv3_db_v1.1.yml)|1.4M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/det/ch_ppocr_mobile_v1.1_det_prune_infer.tar) / [slim模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_det_prune_opt.nb)|
|
||||
|ch_ppocr_mobile_v1.1_det|原始超轻量模型,支持中英文、多语种文本检测|[det_mv3_db_v1.1.yml](../../configs/det/det_mv3_db_v1.1.yml)|2.6M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_train.tar)|
|
||||
|ch_ppocr_server_v1.1_det|通用模型,支持中英文、多语种文本检测,比超轻量模型更大,但效果更好|[det_r18_vd_db_v1.1.yml](../../configs/det/det_r18_vd_db_v1.1.yml)|47.2M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/server/det/ch_ppocr_server_v1.1_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/server/det/ch_ppocr_server_v1.1_det_train.tar)|
|
||||
| --- | --- | --- | --- | --- |
|
||||
|ch_ppocr_mobile_slim_v2.0_det|slim裁剪版超轻量模型,支持中英文、多语种文本检测|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)| |[推理模型 (coming soon)](link) / [slim模型 (coming soon)](link)|
|
||||
|ch_ppocr_mobile_v2.0_det|原始超轻量模型,支持中英文、多语种文本检测|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)|3M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|
|
||||
|ch_ppocr_server_v2.0_det|通用模型,支持中英文、多语种文本检测,比超轻量模型更大,但效果更好|[ch_det_res18_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_res18_db_v2.0.yml)|47M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar)|
|
||||
|
||||
|
||||
<a name="文本识别模型"></a>
|
||||
|
@ -30,42 +31,44 @@ PaddleOCR提供的可下载模型包括`推理模型`、`训练模型`、`预训
|
|||
|
||||
<a name="中文识别模型"></a>
|
||||
#### 1. 中文识别模型
|
||||
|
||||
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
|
||||
|-|-|-|-|-|
|
||||
|ch_ppocr_mobile_slim_v1.1_rec|slim裁剪量化版超轻量模型,支持中英文、数字识别|[rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml)|1.6M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/rec/ch_ppocr_mobile_v1.1_rec_quant_infer.tar) / [slim模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_rec_quant_opt.nb) |
|
||||
|ch_ppocr_mobile_v1.1_rec|原始超轻量模型,支持中英文、数字识别|[rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml)|4.6M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_train.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_pre.tar) |
|
||||
|ch_ppocr_server_v1.1_rec|通用模型,支持中英文、数字识别|[rec_chinese_common_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_common_train_v1.1.yml)|105M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_train.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_pre.tar) |
|
||||
| --- | --- | --- | --- | --- |
|
||||
|ch_ppocr_mobile_slim_v2.0_rec|slim裁剪量化版超轻量模型,支持中英文、数字识别|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)| |[推理模型 (coming soon)](link) / [slim模型 (coming soon)](link) |
|
||||
|ch_ppocr_mobile_v2.0_rec|原始超轻量模型,支持中英文、数字识别|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)|3.71M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
|
||||
|ch_ppocr_server_v2.0_rec|通用模型,支持中英文、数字识别|[rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml)|94.8M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
|
||||
|
||||
**说明:** `训练模型`是基于预训练模型在真实数据与竖排合成文本数据上finetune得到的模型,在真实应用场景中有着更好的表现,`预训练模型`则是直接基于全量真实数据与合成数据训练得到,更适合用于在自己的数据集上finetune。
|
||||
|
||||
<a name="英文识别模型"></a>
|
||||
#### 2. 英文识别模型
|
||||
|
||||
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
|
||||
|-|-|-|-|-|
|
||||
|en_ppocr_mobile_slim_v1.1_rec|slim裁剪量化版超轻量模型,支持英文、数字识别|[rec_en_lite_train.yml](../../configs/rec/multi_languages/rec_en_lite_train.yml)|0.9M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/en/en_ppocr_mobile_v1.1_rec_quant_infer.tar) / [slim模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/en/en_ppocr_mobile_v1.1_rec_quant_opt.nb) |
|
||||
|en_ppocr_mobile_v1.1_rec|原始超轻量模型,支持英文、数字识别|[rec_en_lite_train.yml](../../configs/rec/multi_languages/rec_en_lite_train.yml)|2.0M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/en/en_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/en/en_ppocr_mobile_v1.1_rec_train.tar) |
|
||||
| --- | --- | --- | --- | --- |
|
||||
|en_number_mobile_slim_v2.0_rec|slim裁剪量化版超轻量模型,支持英文、数字识别|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)| |[推理模型 (coming soon )](link) / [slim模型 (coming soon)](link) |
|
||||
|en_number_mobile_v2.0_rec|原始超轻量模型,支持英文、数字识别|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)|2.56M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_train.tar) |
|
||||
|
||||
<a name="多语言识别模型"></a>
|
||||
#### 3. 多语言识别模型(更多语言持续更新中...)
|
||||
|
||||
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
|
||||
|-|-|-|-|-|
|
||||
| french_ppocr_mobile_v1.1_rec |法文识别|[rec_french_lite_train.yml](../../configs/rec/multi_languages/rec_french_lite_train.yml)|2.1M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/fr/french_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/fr/french_ppocr_mobile_v1.1_rec_train.tar) |
|
||||
| german_ppocr_mobile_v1.1_rec |德文识别|[rec_ger_lite_train.yml](../../configs/rec/multi_languages/rec_ger_lite_train.yml)|2.1M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/ge/german_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/ge/german_ppocr_mobile_v1.1_rec_train.tar) |
|
||||
| korean_ppocr_mobile_v1.1_rec |韩文识别|[rec_korean_lite_train.yml](../../configs/rec/multi_languages/rec_korean_lite_train.yml)|3.4M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/kr/korean_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/kr/korean_ppocr_mobile_v1.1_rec_train.tar) |
|
||||
| japan_ppocr_mobile_v1.1_rec |日文识别|[rec_japan_lite_train.yml](../../configs/rec/multi_languages/rec_japan_lite_train.yml)|3.7M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/jp/japan_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/jp/japan_ppocr_mobile_v1.1_rec_train.tar) |
|
||||
| --- | --- | --- | --- | --- |
|
||||
| french_mobile_v2.0_rec |法文识别|[rec_french_lite_train.yml](../../configs/rec/multi_language/rec_french_lite_train.yml)|2.65M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_train.tar) |
|
||||
| german_mobile_v2.0_rec |德文识别|[rec_german_lite_train.yml](../../configs/rec/multi_language/rec_german_lite_train.yml)|2.65M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_train.tar) |
|
||||
| korean_mobile_v2.0_rec |韩文识别|[rec_korean_lite_train.yml](../../configs/rec/multi_language/rec_korean_lite_train.yml)|3.9M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_train.tar) |
|
||||
| japan_mobile_v2.0_rec |日文识别|[rec_japan_lite_train.yml](../../configs/rec/multi_language/rec_japan_lite_train.yml)|4.23M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_train.tar) |
|
||||
|
||||
|
||||
<a name="文本方向分类模型"></a>
|
||||
### 三、文本方向分类模型
|
||||
|
||||
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
|
||||
|-|-|-|-|-|
|
||||
|ch_ppocr_mobile_v1.1_cls_quant|slim量化版模型|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)|0.5M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_quant_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_quant_train.tar) / [slim模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_cls_quant_opt.nb) |
|
||||
|ch_ppocr_mobile_v1.1_cls|原始模型|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)|850kb|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_train.tar) |
|
||||
| --- | --- | --- | --- | --- |
|
||||
|ch_ppocr_mobile_slim_v2.0_cls|slim量化版模型|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)| |[推理模型 (coming soon)](link) / [训练模型](link) / [slim模型](link) |
|
||||
|ch_ppocr_mobile_v2.0_cls|原始模型|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)|1.38M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |
|
||||
|
||||
|
||||
## OCR模型列表(V1.0,7月16日更新)
|
||||
## OCR模型列表(V1.1,2020年9月22日更新)
|
||||
|
||||
[1.1系列模型地址](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/models_list.md)
|
||||
|
||||
|模型名称|模型简介|检测模型地址|识别模型地址|支持空格的识别模型地址|
|
||||
|-|-|-|-|-|
|
||||
|chinese_db_crnn_mobile|8.6M超轻量级中文OCR模型|[推理模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar) |[推理模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar) |[推理模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)
|
||||
|chinese_db_crnn_server|通用中文OCR模型|[推理模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar) |[推理模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar) |[推理模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)
|
||||
|
|
|
@ -13,8 +13,8 @@
|
|||
|
||||
| 模型简介 | 模型名称 |推荐场景 | 检测模型 | 方向分类器 | 识别模型 |
|
||||
| ------------ | --------------- | ----------------|---- | ---------- | -------- |
|
||||
| 中英文超轻量OCR模型(8.1M) | ch_ppocr_mobile_v2.0_xx |移动端&服务器端|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) |
|
||||
| 中英文通用OCR模型(155.1M) | ch_ppocr_server_v2.0_xx |服务器端 |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) |
|
||||
| 中英文超轻量OCR模型(8.1M) | ch_ppocr_mobile_v2.0_xx |移动端&服务器端|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
|
||||
| 中英文通用OCR模型(143M) | ch_ppocr_server_v2.0_xx |服务器端 |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
|
||||
|
||||
|
||||
* windows 环境下如果没有安装wget,下载模型时可将链接复制到浏览器中下载,并解压放置在相应目录下
|
||||
|
|
|
@ -348,7 +348,7 @@ im_show.save('result.jpg')
|
|||
| cls_batch_num | 进行分类时,同时前向的图片数 |30 |
|
||||
| enable_mkldnn | 是否启用mkldnn | FALSE |
|
||||
| use_zero_copy_run | 是否通过zero_copy_run的方式进行前向 | FALSE |
|
||||
| lang | 模型语言类型,目前支持 中文(ch)和英文(en) | ch |
|
||||
| lang | 模型语言类型,目前支持 目前支持中英文(ch)、英文(en)、法语(french)、德语(german)、韩语(korean)、日语(japan) | ch |
|
||||
| det | 前向时使用启动检测 | TRUE |
|
||||
| rec | 前向时是否启动识别 | TRUE |
|
||||
| cls | 前向时是否启动分类 (命令行模式下使用use_angle_cls控制前向是否启动分类) | FALSE |
|
||||
|
|
|
@ -9,14 +9,14 @@ The following list can be viewed through `--help`
|
|||
|
||||
## INTRODUCTION TO GLOBAL PARAMETERS OF CONFIGURATION FILE
|
||||
|
||||
Take rec_chinese_lite_train_v1.1.yml as an example
|
||||
Take rec_chinese_lite_train_v2.0.yml as an example
|
||||
### Global
|
||||
|
||||
| Parameter | Use | Defaults | Note |
|
||||
| :----------------------: | :---------------------: | :--------------: | :--------------------: |
|
||||
| use_gpu | Set using GPU or not | true | \ |
|
||||
| epoch_num | Maximum training epoch number | 500 | \ |
|
||||
| log_smooth_window | Sliding window size | 20 | \ |
|
||||
| log_smooth_window | Log queue length, the median value in the queue each time will be printed | 20 | \ |
|
||||
| print_batch_step | Set print log interval | 10 | \ |
|
||||
| save_model_dir | Set model save path | output/{算法名称} | \ |
|
||||
| save_epoch_step | Set model save interval | 3 | \ |
|
||||
|
|
|
@ -192,7 +192,7 @@ python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_
|
|||
|
||||
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:
|
||||
|
||||
![](../imgs_results/det_res_img_10_east.jpg)
|
||||
(coming soon)
|
||||
|
||||
**Note**: EAST post-processing locality aware NMS has two versions: Python and C++. The speed of C++ version is obviously faster than that of Python version. Due to the compilation version problem of NMS of C++ version, C++ version NMS will be called only in Python 3.5 environment, and python version NMS will be called in other cases.
|
||||
|
||||
|
@ -214,7 +214,7 @@ python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/img
|
|||
|
||||
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:
|
||||
|
||||
![](../imgs_results/det_res_img_10_sast.jpg)
|
||||
(coming soon)
|
||||
|
||||
#### (2). Curved text detection model (Total-Text)
|
||||
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the Total-Text English dataset as an example ([model download link (coming soon)](https://paddleocr.bj.bcebos.com/SAST/sast_r50_vd_total_text.tar)), you can use the following command to convert:
|
||||
|
@ -231,7 +231,7 @@ python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/img
|
|||
|
||||
The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:
|
||||
|
||||
![](../imgs_results/det_res_img623_sast.jpg)
|
||||
(coming soon)
|
||||
|
||||
**Note**: SAST post-processing locality aware NMS has two versions: Python and C++. The speed of C++ version is obviously faster than that of Python version. Due to the compilation version problem of NMS of C++ version, C++ version NMS will be called only in Python 3.5 environment, and python version NMS will be called in other cases.
|
||||
|
||||
|
@ -254,8 +254,9 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/ch/word_4.jpg"
|
|||
|
||||
After executing the command, the prediction results (recognized text and score) of the above image will be printed on the screen.
|
||||
|
||||
Predicts of ./doc/imgs_words/ch/word_4.jpg:['实力活力', 0.89552695]
|
||||
|
||||
```bash
|
||||
Predicts of ./doc/imgs_words/ch/word_4.jpg:('实力活力', 0.98458153)
|
||||
```
|
||||
|
||||
<a name="CTC-BASED_RECOGNITION"></a>
|
||||
### 2. CTC-BASED TEXT RECOGNITION MODEL INFERENCE
|
||||
|
@ -276,7 +277,6 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png
|
|||
|
||||
<a name="ATTENTION-BASED_RECOGNITION"></a>
|
||||
### 3. ATTENTION-BASED TEXT RECOGNITION MODEL INFERENCE
|
||||
![](../imgs_words_en/word_336.png)
|
||||
|
||||
The recognition model based on Attention loss is different from ctc, and additional recognition algorithm parameters need to be set --rec_algorithm="RARE"
|
||||
After executing the command, the recognition result of the above image is as follows:
|
||||
|
@ -284,8 +284,13 @@ After executing the command, the recognition result of the above image is as fol
|
|||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/rare/" --rec_image_shape="3, 32, 100" --rec_char_type="en" --rec_algorithm="RARE"
|
||||
```
|
||||
|
||||
Predicts of ./doc/imgs_words_en/word_336.png:['super', 0.9999555]
|
||||
![](../imgs_words_en/word_336.png)
|
||||
|
||||
After executing the command, the recognition result of the above image is as follows:
|
||||
|
||||
```bash
|
||||
Predicts of ./doc/imgs_words_en/word_336.png:('super', 0.9999073)
|
||||
```
|
||||
**Note**:Since the above model refers to [DTRB](https://arxiv.org/abs/1904.01906) text recognition training and evaluation process, it is different from the training of lightweight Chinese recognition model in two aspects:
|
||||
|
||||
- The image resolution used in training is different: the image resolution used in training the above model is [3,32,100], while during our Chinese model training, in order to ensure the recognition effect of long text, the image resolution used in training is [3, 32, 320]. The default shape parameter of the inference stage is the image resolution used in training phase, that is [3, 32, 320]. Therefore, when running inference of the above English model here, you need to set the shape of the recognition image through the parameter `rec_image_shape`.
|
||||
|
@ -299,10 +304,10 @@ dict_character = list(self.character_str)
|
|||
|
||||
<a name="USING_CUSTOM_CHARACTERS"></a>
|
||||
### 4. TEXT RECOGNITION MODEL INFERENCE USING CUSTOM CHARACTERS DICTIONARY
|
||||
If the chars dictionary is modified during training, you need to specify the new dictionary path by setting the parameter `rec_char_dict_path` when using your inference model to predict.
|
||||
If the text dictionary is modified during training, when using the inference model to predict, you need to specify the dictionary path used by `--rec_char_dict_path`, and set `rec_char_type=ch`
|
||||
|
||||
```
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="en" --rec_char_dict_path="your text dict path"
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="ch" --rec_char_dict_path="your text dict path"
|
||||
```
|
||||
|
||||
<a name="MULTILINGUAL_MODEL_INFERENCE"></a>
|
||||
|
@ -318,9 +323,7 @@ python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" -
|
|||
After executing the command, the prediction result of the above figure is:
|
||||
|
||||
``` text
|
||||
2020-09-19 16:15:05,076-INFO: index: [205 206 38 39]
|
||||
2020-09-19 16:15:05,077-INFO: word : 바탕으로
|
||||
2020-09-19 16:15:05,077-INFO: score: 0.9171358942985535
|
||||
Predicts of ./doc/imgs_words/korean/1.jpg:('바탕으로', 0.9948904)
|
||||
```
|
||||
|
||||
<a name="ANGLE_CLASSIFICATION_MODEL_INFERENCE"></a>
|
||||
|
@ -381,4 +384,4 @@ python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_10.jpg" --d
|
|||
|
||||
After executing the command, the recognition result image is as follows:
|
||||
|
||||
![](../imgs_results/img_10.jpg)
|
||||
(coming soon)
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
## OCR model list(V1.1, updated on 9.22)
|
||||
## OCR model list(V1.1, updated on 2020.12.12)
|
||||
|
||||
- [1. Text Detection Model](#Detection)
|
||||
- [2. Text Recognition Model](#Recognition)
|
||||
|
@ -10,61 +10,62 @@
|
|||
The downloadable models provided by PaddleOCR include `inference model`, `trained model`, `pre-trained model` and `slim model`. The differences between the models are as follows:
|
||||
|
||||
|model type|model format|description|
|
||||
|-|-|-|
|
||||
|inference model|model、params|Used for reasoning based on Python prediction engine. [detail](./inference_en.md)|
|
||||
|trained model / pre-trained model|\*.pdmodel、\*.pdopt、\*.pdparams|The checkpoints model saved in the training process, which stores the parameters of the model, mostly used for model evaluation and continuous training.|
|
||||
|--- | --- | --- |
|
||||
|inference model|inference.pdmodel、inference.pdiparams|Used for reasoning based on Python prediction engine,[detail](./inference_en.md)|
|
||||
|trained model, pre-trained model|\*.pdparams、\*.pdopt、\*.states |The checkpoints model saved in the training process, which stores the parameters of the model, mostly used for model evaluation and continuous training.|
|
||||
|slim model|\*.nb|Generally used for Lite deployment|
|
||||
|
||||
|
||||
<a name="Detection"></a>
|
||||
### 1. Text Detection Model
|
||||
|model name|description|config|model size|download|
|
||||
|-|-|-|-|-|
|
||||
|ch_ppocr_mobile_slim_v1.1_det|Slim pruned lightweight model, supporting Chinese, English, multilingual text detection|[det_mv3_db_v1.1.yml](../../configs/det/det_mv3_db_v1.1.yml)|1.4M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/det/ch_ppocr_mobile_v1.1_det_prune_infer.tar) / [slim model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_det_prune_opt.nb)|
|
||||
|ch_ppocr_mobile_v1.1_det|Original lightweight model, supporting Chinese, English, multilingual text detection|[det_mv3_db_v1.1.yml](../../configs/det/det_mv3_db_v1.1.yml)|2.6M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_train.tar)|
|
||||
|ch_ppocr_server_v1.1_det|General model, which is larger than the lightweight model, but achieved better performance|[det_r18_vd_db_v1.1.yml](../../configs/det/det_r18_vd_db_v1.1.yml)|47.2M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/server/det/ch_ppocr_server_v1.1_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/server/det/ch_ppocr_server_v1.1_det_train.tar)|
|
||||
|
||||
|model name|description|config|model size|download|
|
||||
| --- | --- | --- | --- | --- |
|
||||
|ch_ppocr_mobile_slim_v2.0_det|Slim pruned lightweight model, supporting Chinese, English, multilingual text detection|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)| |[inference model (coming soon)](link) / [slim model (coming soon)](link)|
|
||||
|ch_ppocr_mobile_v2.0_det|Original lightweight model, supporting Chinese, English, multilingual text detection|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)|3M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|
|
||||
|ch_ppocr_server_v2.0_det|General model, which is larger than the lightweight model, but achieved better performance|[ch_det_res18_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_res18_db_v2.0.yml)|47M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar)|
|
||||
|
||||
<a name="Recognition"></a>
|
||||
### 2. Text Recognition Model
|
||||
|
||||
<a name="Chinese"></a>
|
||||
#### Chinese Recognition Model
|
||||
|
||||
|model name|description|config|model size|download|
|
||||
|-|-|-|-|-|
|
||||
|ch_ppocr_mobile_slim_v1.1_rec|Slim pruned and quantized lightweight model, supporting Chinese, English and number recognition|[rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml)|1.6M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/rec/ch_ppocr_mobile_v1.1_rec_quant_infer.tar) / [slim model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_rec_quant_opt.nb) |
|
||||
|ch_ppocr_mobile_v1.1_rec|Original lightweight model, supporting Chinese, English and number recognition|[rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml)|4.6M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_train.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_pre.tar) |
|
||||
|ch_ppocr_server_v1.1_rec|General model, supporting Chinese, English and number recognition|[rec_chinese_common_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_common_train_v1.1.yml)|105M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_train.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_pre.tar) |
|
||||
| --- | --- | --- | --- | --- |
|
||||
|ch_ppocr_mobile_slim_v2.0_rec|Slim pruned and quantized lightweight model, supporting Chinese, English and number recognition|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)| |[inference model (coming soon)](link) / [slim model (coming soon)](link) |
|
||||
|ch_ppocr_mobile_v2.0_rec|Original lightweight model, supporting Chinese, English and number recognition|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)|3.71M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
|
||||
|ch_ppocr_server_v2.0_rec|General model, supporting Chinese, English and number recognition|[rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml)|94.8M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
|
||||
|
||||
|
||||
**Note:** The `trained model` is finetuned on the `pre-trained model` with real data and synthsized vertical text data, which achieved better performance in real scene. The `pre-trained model` is directly trained on the full amount of real data and synthsized data, which is more suitable for finetune on your own dataset.
|
||||
|
||||
<a name="English"></a>
|
||||
#### English Recognition Model
|
||||
|
||||
|model name|description|config|model size|download|
|
||||
|-|-|-|-|-|
|
||||
|en_ppocr_mobile_slim_v1.1_rec|Slim pruned and quantized lightweight model, supporting English and number recognition|[rec_en_lite_train.yml](../../configs/rec/multi_languages/rec_en_lite_train.yml)|0.9M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/en/en_ppocr_mobile_v1.1_rec_quant_infer.tar) / [slim model](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/en/en_ppocr_mobile_v1.1_rec_quant_opt.nb) |
|
||||
|en_ppocr_mobile_v1.1_rec|Original lightweight model, supporting English and number recognition|[rec_en_lite_train.yml](../../configs/rec/multi_languages/rec_en_lite_train.yml)|2.0M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/en/en_ppocr_mobile_v1.1_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/en/en_ppocr_mobile_v1.1_rec_train.tar) |
|
||||
| --- | --- | --- | --- | --- |
|
||||
|en_number_mobile_slim_v2.0_rec|Slim pruned and quantized lightweight model, supporting English and number recognition|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)| |[inference model (coming soon )](link) / [slim model (coming soon)](link) |
|
||||
|en_number_mobile_v2.0_rec|Original lightweight model, supporting English and number recognition|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)|2.56M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_train.tar) |
|
||||
|
||||
<a name="Multilingual"></a>
|
||||
#### Multilingual Recognition Model(Updating...)
|
||||
|model name|description|config|model size|download|
|
||||
|-|-|-|-|-|
|
||||
| french_ppocr_mobile_v1.1_rec |Lightweight model for French recognition|[rec_french_lite_train.yml](../../configs/rec/multi_languages/rec_french_lite_train.yml)|2.1M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/fr/french_ppocr_mobile_v1.1_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/fr/french_ppocr_mobile_v1.1_rec_train.tar) |
|
||||
| german_ppocr_mobile_v1.1_rec |German model for French recognition|[rec_ger_lite_train.yml](../../configs/rec/multi_languages/rec_ger_lite_train.yml)|2.1M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/ge/german_ppocr_mobile_v1.1_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/ge/german_ppocr_mobile_v1.1_rec_train.tar) |
|
||||
| korean_ppocr_mobile_v1.1_rec |Lightweight model for Korean recognition|[rec_korean_lite_train.yml](../../configs/rec/multi_languages/rec_korean_lite_train.yml)|3.4M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/kr/korean_ppocr_mobile_v1.1_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/kr/korean_ppocr_mobile_v1.1_rec_train.tar) |
|
||||
| japan_ppocr_mobile_v1.1_rec |Lightweight model for Japanese recognition|[rec_japan_lite_train.yml](../../configs/rec/multi_languages/rec_japan_lite_train.yml)|3.7M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/jp/japan_ppocr_mobile_v1.1_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/jp/japan_ppocr_mobile_v1.1_rec_train.tar) |
|
||||
|
||||
|model name|description|config|model size|download|
|
||||
| --- | --- | --- | --- | --- |
|
||||
| french_mobile_v2.0_rec |Lightweight model for French recognition|[rec_french_lite_train.yml](../../configs/rec/multi_language/rec_french_lite_train.yml)|2.65M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_train.tar) |
|
||||
| german_mobile_v2.0_rec |Lightweight model for French recognition|[rec_german_lite_train.yml](../../configs/rec/multi_language/rec_german_lite_train.yml)|2.65M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_train.tar) |
|
||||
| korean_mobile_v2.0_rec |Lightweight model for Korean recognition|[rec_korean_lite_train.yml](../../configs/rec/multi_language/rec_korean_lite_train.yml)|3.9M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_train.tar) |
|
||||
| japan_mobile_v2.0_rec |Lightweight model for Japanese recognition|[rec_japan_lite_train.yml](../../configs/rec/multi_language/rec_japan_lite_train.yml)|4.23M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_train.tar) |
|
||||
|
||||
<a name="Angle"></a>
|
||||
### 3. Text Angle Classification Model
|
||||
|
||||
|model name|description|config|model size|download|
|
||||
|-|-|-|-|-|
|
||||
|ch_ppocr_mobile_v1.1_cls_quant|Slim quantized model|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)|0.5M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_quant_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_quant_train.tar) / [slim model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_cls_quant_opt.nb) |
|
||||
|ch_ppocr_mobile_v1.1_cls|Original model|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)|850kb|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_train.tar) |
|
||||
| --- | --- | --- | --- | --- |
|
||||
|ch_ppocr_mobile_slim_v2.0_cls|Slim quantized model|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)| |[inference model (coming soon)](link) / [trained model](link) / [slim model](link) |
|
||||
|ch_ppocr_mobile_v2.0_cls|Original model|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)|1.38M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |
|
||||
|
||||
|
||||
## OCR model list(V1.0, updated on 7.16)
|
||||
|model name|description|detection model|recognition model|recognition model supporting space recognition|
|
||||
|-|-|-|-|-|
|
||||
|chinese_db_crnn_mobile|8.6M lightweight OCR model|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar) | [inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar) |[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)
|
||||
|chinese_db_crnn_server|General OCR model|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar) | [inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar) |[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)
|
||||
## OCR model list (V1.1,updated on 2020.9.22)
|
||||
|
||||
[1.1 series model address](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/models_list.md)
|
||||
|
|
|
@ -13,8 +13,8 @@ The detection and recognition models on the mobile and server sides are as follo
|
|||
|
||||
| Model introduction | Model name | Recommended scene | Detection model | Direction Classifier | Recognition model |
|
||||
| ------------ | --------------- | ----------------|---- | ---------- | -------- |
|
||||
| Ultra-lightweight Chinese OCR model(8.1M) | ch_ppocr_mobile_v2.0_xx |Mobile-side/Server-side|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) |
|
||||
| Universal Chinese OCR model(155.1M) | ch_ppocr_server_v2.0_xx |Server-side |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) |
|
||||
| Ultra-lightweight Chinese OCR model (8.1M) | ch_ppocr_mobile_v2.0_xx |Mobile-side/Server-side|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
|
||||
| Universal Chinese OCR model (143M) | ch_ppocr_server_v2.0_xx |Server-side |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [pretrained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
|
||||
|
||||
|
||||
* If `wget` is not installed in the windows environment, you can copy the link to the browser to download when downloading the model, then uncompress it and place it in the corresponding directory.
|
||||
|
|
Binary file not shown.
Before Width: | Height: | Size: 148 KiB After Width: | Height: | Size: 92 KiB |
Binary file not shown.
Before Width: | Height: | Size: 80 KiB After Width: | Height: | Size: 77 KiB |
Binary file not shown.
Before Width: | Height: | Size: 330 KiB After Width: | Height: | Size: 331 KiB |
123
paddleocr.py
123
paddleocr.py
|
@ -35,44 +35,45 @@ __all__ = ['PaddleOCR']
|
|||
|
||||
model_urls = {
|
||||
'det':
|
||||
'https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_infer.tar',
|
||||
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar',
|
||||
'rec': {
|
||||
'ch': {
|
||||
'url':
|
||||
'https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_infer.tar',
|
||||
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar',
|
||||
'dict_path': './ppocr/utils/ppocr_keys_v1.txt'
|
||||
},
|
||||
'en': {
|
||||
'url':
|
||||
'https://paddleocr.bj.bcebos.com/20-09-22/mobile/en/en_ppocr_mobile_v1.1_rec_infer.tar',
|
||||
'dict_path': './ppocr/utils/ic15_dict.txt'
|
||||
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar',
|
||||
'dict_path': './ppocr/utils/dict/en_dict.txt'
|
||||
},
|
||||
'french': {
|
||||
'url':
|
||||
'https://paddleocr.bj.bcebos.com/20-09-22/mobile/fr/french_ppocr_mobile_v1.1_rec_infer.tar',
|
||||
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_infer.tar',
|
||||
'dict_path': './ppocr/utils/dict/french_dict.txt'
|
||||
},
|
||||
'german': {
|
||||
'url':
|
||||
'https://paddleocr.bj.bcebos.com/20-09-22/mobile/ge/german_ppocr_mobile_v1.1_rec_infer.tar',
|
||||
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_infer.tar',
|
||||
'dict_path': './ppocr/utils/dict/german_dict.txt'
|
||||
},
|
||||
'korean': {
|
||||
'url':
|
||||
'https://paddleocr.bj.bcebos.com/20-09-22/mobile/kr/korean_ppocr_mobile_v1.1_rec_infer.tar',
|
||||
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar',
|
||||
'dict_path': './ppocr/utils/dict/korean_dict.txt'
|
||||
},
|
||||
'japan': {
|
||||
'url':
|
||||
'https://paddleocr.bj.bcebos.com/20-09-22/mobile/jp/japan_ppocr_mobile_v1.1_rec_infer.tar',
|
||||
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_infer.tar',
|
||||
'dict_path': './ppocr/utils/dict/japan_dict.txt'
|
||||
}
|
||||
},
|
||||
'cls':
|
||||
'https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_infer.tar'
|
||||
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar'
|
||||
}
|
||||
|
||||
SUPPORT_DET_MODEL = ['DB']
|
||||
VERSION = 2.0
|
||||
SUPPORT_REC_MODEL = ['CRNN']
|
||||
BASE_DIR = os.path.expanduser("~/.paddleocr/")
|
||||
|
||||
|
@ -94,20 +95,24 @@ def download_with_progressbar(url, save_path):
|
|||
|
||||
def maybe_download(model_storage_directory, url):
|
||||
# using custom model
|
||||
if not os.path.exists(os.path.join(
|
||||
model_storage_directory, 'model')) or not os.path.exists(
|
||||
os.path.join(model_storage_directory, 'params')):
|
||||
tar_file_name_list = [
|
||||
'inference.pdiparams', 'inference.pdiparams.info', 'inference.pdmodel'
|
||||
]
|
||||
if not os.path.exists(
|
||||
os.path.join(model_storage_directory, 'inference.pdiparams')
|
||||
) or not os.path.exists(
|
||||
os.path.join(model_storage_directory, 'inference.pdmodel')):
|
||||
tmp_path = os.path.join(model_storage_directory, url.split('/')[-1])
|
||||
print('download {} to {}'.format(url, tmp_path))
|
||||
os.makedirs(model_storage_directory, exist_ok=True)
|
||||
download_with_progressbar(url, tmp_path)
|
||||
with tarfile.open(tmp_path, 'r') as tarObj:
|
||||
for member in tarObj.getmembers():
|
||||
if "model" in member.name:
|
||||
filename = 'model'
|
||||
elif "params" in member.name:
|
||||
filename = 'params'
|
||||
else:
|
||||
filename = None
|
||||
for tar_file_name in tar_file_name_list:
|
||||
if tar_file_name in member.name:
|
||||
filename = tar_file_name
|
||||
if filename is None:
|
||||
continue
|
||||
file = tarObj.extractfile(member)
|
||||
with open(
|
||||
|
@ -176,43 +181,43 @@ def parse_args(mMain=True, add_help=True):
|
|||
parser.add_argument("--use_angle_cls", type=str2bool, default=False)
|
||||
return parser.parse_args()
|
||||
else:
|
||||
return argparse.Namespace(use_gpu=True,
|
||||
ir_optim=True,
|
||||
use_tensorrt=False,
|
||||
gpu_mem=8000,
|
||||
image_dir='',
|
||||
det_algorithm='DB',
|
||||
det_model_dir=None,
|
||||
det_limit_side_len=960,
|
||||
det_limit_type='max',
|
||||
det_db_thresh=0.3,
|
||||
det_db_box_thresh=0.5,
|
||||
det_db_unclip_ratio=2.0,
|
||||
det_east_score_thresh=0.8,
|
||||
det_east_cover_thresh=0.1,
|
||||
det_east_nms_thresh=0.2,
|
||||
rec_algorithm='CRNN',
|
||||
rec_model_dir=None,
|
||||
rec_image_shape="3, 32, 320",
|
||||
rec_char_type='ch',
|
||||
rec_batch_num=30,
|
||||
max_text_length=25,
|
||||
rec_char_dict_path=None,
|
||||
use_space_char=True,
|
||||
drop_score=0.5,
|
||||
cls_model_dir=None,
|
||||
cls_image_shape="3, 48, 192",
|
||||
label_list=['0', '180'],
|
||||
cls_batch_num=30,
|
||||
cls_thresh=0.9,
|
||||
enable_mkldnn=False,
|
||||
use_zero_copy_run=False,
|
||||
use_pdserving=False,
|
||||
lang='ch',
|
||||
det=True,
|
||||
rec=True,
|
||||
use_angle_cls=False
|
||||
)
|
||||
return argparse.Namespace(
|
||||
use_gpu=True,
|
||||
ir_optim=True,
|
||||
use_tensorrt=False,
|
||||
gpu_mem=8000,
|
||||
image_dir='',
|
||||
det_algorithm='DB',
|
||||
det_model_dir=None,
|
||||
det_limit_side_len=960,
|
||||
det_limit_type='max',
|
||||
det_db_thresh=0.3,
|
||||
det_db_box_thresh=0.5,
|
||||
det_db_unclip_ratio=2.0,
|
||||
det_east_score_thresh=0.8,
|
||||
det_east_cover_thresh=0.1,
|
||||
det_east_nms_thresh=0.2,
|
||||
rec_algorithm='CRNN',
|
||||
rec_model_dir=None,
|
||||
rec_image_shape="3, 32, 320",
|
||||
rec_char_type='ch',
|
||||
rec_batch_num=30,
|
||||
max_text_length=25,
|
||||
rec_char_dict_path=None,
|
||||
use_space_char=True,
|
||||
drop_score=0.5,
|
||||
cls_model_dir=None,
|
||||
cls_image_shape="3, 48, 192",
|
||||
label_list=['0', '180'],
|
||||
cls_batch_num=30,
|
||||
cls_thresh=0.9,
|
||||
enable_mkldnn=False,
|
||||
use_zero_copy_run=False,
|
||||
use_pdserving=False,
|
||||
lang='ch',
|
||||
det=True,
|
||||
rec=True,
|
||||
use_angle_cls=False)
|
||||
|
||||
|
||||
class PaddleOCR(predict_system.TextSystem):
|
||||
|
@ -228,19 +233,21 @@ class PaddleOCR(predict_system.TextSystem):
|
|||
lang = postprocess_params.lang
|
||||
assert lang in model_urls[
|
||||
'rec'], 'param lang must in {}, but got {}'.format(
|
||||
model_urls['rec'].keys(), lang)
|
||||
model_urls['rec'].keys(), lang)
|
||||
if postprocess_params.rec_char_dict_path is None:
|
||||
postprocess_params.rec_char_dict_path = model_urls['rec'][lang][
|
||||
'dict_path']
|
||||
|
||||
# init model dir
|
||||
if postprocess_params.det_model_dir is None:
|
||||
postprocess_params.det_model_dir = os.path.join(BASE_DIR, 'det')
|
||||
postprocess_params.det_model_dir = os.path.join(
|
||||
BASE_DIR, '{}/det'.format(VERSION))
|
||||
if postprocess_params.rec_model_dir is None:
|
||||
postprocess_params.rec_model_dir = os.path.join(
|
||||
BASE_DIR, 'rec/{}'.format(lang))
|
||||
BASE_DIR, '{}/rec/{}'.format(VERSION, lang))
|
||||
if postprocess_params.cls_model_dir is None:
|
||||
postprocess_params.cls_model_dir = os.path.join(BASE_DIR, 'cls')
|
||||
postprocess_params.cls_model_dir = os.path.join(
|
||||
BASE_DIR, '{}/cls'.format(VERSION))
|
||||
print(postprocess_params)
|
||||
# download model
|
||||
maybe_download(postprocess_params.det_model_dir, model_urls['det'])
|
||||
|
|
|
@ -186,4 +186,4 @@ if __name__ == "__main__":
|
|||
cv2.imwrite(img_path, src_im)
|
||||
logger.info("The visualized image saved in {}".format(img_path))
|
||||
if count > 1:
|
||||
logger.info("Avg Time:", total_time / (count - 1))
|
||||
logger.info("Avg Time: {}".format(total_time / (count - 1)))
|
||||
|
|
Loading…
Reference in New Issue