Merge pull request #1657 from baiyfbupt/dygraph
Add dygraph quantization
This commit is contained in:
commit
541c3170f8
|
@ -0,0 +1,61 @@
|
||||||
|
|
||||||
|
## 介绍
|
||||||
|
复杂的模型有利于提高模型的性能,但也导致模型中存在一定冗余,模型量化将全精度缩减到定点数减少这种冗余,达到减少模型计算复杂度,提高模型推理性能的目的。
|
||||||
|
模型量化可以在基本不损失模型的精度的情况下,将FP32精度的模型参数转换为Int8精度,减小模型参数大小并加速计算,使用量化后的模型在移动端等部署时更具备速度优势。
|
||||||
|
|
||||||
|
本教程将介绍如何使用飞桨模型压缩库PaddleSlim做PaddleOCR模型的压缩。
|
||||||
|
[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim) 集成了模型剪枝、量化(包括量化训练和离线量化)、蒸馏和神经网络搜索等多种业界常用且领先的模型压缩功能,如果您感兴趣,可以关注并了解。
|
||||||
|
|
||||||
|
在开始本教程之前,建议先了解[PaddleOCR模型的训练方法](../../../doc/doc_ch/quickstart.md)以及[PaddleSlim](https://paddleslim.readthedocs.io/zh_CN/latest/index.html)
|
||||||
|
|
||||||
|
|
||||||
|
## 快速开始
|
||||||
|
量化多适用于轻量模型在移动端的部署,当训练出一个模型后,如果希望进一步的压缩模型大小并加速预测,可使用量化的方法压缩模型。
|
||||||
|
|
||||||
|
模型量化主要包括五个步骤:
|
||||||
|
1. 安装 PaddleSlim
|
||||||
|
2. 准备训练好的模型
|
||||||
|
3. 量化训练
|
||||||
|
4. 导出量化推理模型
|
||||||
|
5. 量化模型预测部署
|
||||||
|
|
||||||
|
### 1. 安装PaddleSlim
|
||||||
|
|
||||||
|
```bash
|
||||||
|
git clone https://github.com/PaddlePaddle/PaddleSlim.git
|
||||||
|
cd Paddleslim
|
||||||
|
python setup.py install
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. 准备训练好的模型
|
||||||
|
|
||||||
|
PaddleOCR提供了一系列训练好的[模型](../../../doc/doc_ch/models_list.md),如果待量化的模型不在列表中,需要按照[常规训练](../../../doc/doc_ch/quickstart.md)方法得到训练好的模型。
|
||||||
|
|
||||||
|
### 3. 量化训练
|
||||||
|
量化训练包括离线量化训练和在线量化训练,在线量化训练效果更好,需加载预训练模型,在定义好量化策略后即可对模型进行量化。
|
||||||
|
|
||||||
|
|
||||||
|
量化训练的代码位于slim/quantization/quant.py 中,比如训练检测模型,训练指令如下:
|
||||||
|
```bash
|
||||||
|
python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights='your trained model' Global.save_model_dir=./output/quant_model
|
||||||
|
|
||||||
|
# 比如下载提供的训练模型
|
||||||
|
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar
|
||||||
|
tar -xf ch_ppocr_mobile_v2.0_det_train.tar
|
||||||
|
python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights=./ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.save_model_dir=./output/quant_model
|
||||||
|
|
||||||
|
```
|
||||||
|
如果要训练识别模型的量化,修改配置文件和加载的模型参数即可。
|
||||||
|
|
||||||
|
### 4. 导出模型
|
||||||
|
|
||||||
|
在得到量化训练保存的模型后,我们可以将其导出为inference_model,用于预测部署:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python deploy/slim/quantization/export_model.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=output/quant_model/best_accuracy Global.save_model_dir=./output/quant_inference_model
|
||||||
|
```
|
||||||
|
|
||||||
|
### 5. 量化模型部署
|
||||||
|
|
||||||
|
上述步骤导出的量化模型,参数精度仍然是FP32,但是参数的数值范围是int8,导出的模型可以通过PaddleLite的opt模型转换工具完成模型转换。
|
||||||
|
量化模型部署的可参考 [移动端模型部署](../../lite/readme.md)
|
|
@ -0,0 +1,68 @@
|
||||||
|
|
||||||
|
## Introduction
|
||||||
|
|
||||||
|
Generally, a more complex model would achive better performance in the task, but it also leads to some redundancy in the model.
|
||||||
|
Quantization is a technique that reduces this redundancy by reducing the full precision data to a fixed number,
|
||||||
|
so as to reduce model calculation complexity and improve model inference performance.
|
||||||
|
|
||||||
|
This example uses PaddleSlim provided [APIs of Quantization](https://paddlepaddle.github.io/PaddleSlim/api/quantization_api/) to compress the OCR model.
|
||||||
|
|
||||||
|
It is recommended that you could understand following pages before reading this example:
|
||||||
|
- [The training strategy of OCR model](../../../doc/doc_en/quickstart_en.md)
|
||||||
|
- [PaddleSlim Document](https://paddlepaddle.github.io/PaddleSlim/api/quantization_api/)
|
||||||
|
|
||||||
|
## Quick Start
|
||||||
|
Quantization is mostly suitable for the deployment of lightweight models on mobile terminals.
|
||||||
|
After training, if you want to further compress the model size and accelerate the prediction, you can use quantization methods to compress the model according to the following steps.
|
||||||
|
|
||||||
|
1. Install PaddleSlim
|
||||||
|
2. Prepare trained model
|
||||||
|
3. Quantization-Aware Training
|
||||||
|
4. Export inference model
|
||||||
|
5. Deploy quantization inference model
|
||||||
|
|
||||||
|
|
||||||
|
### 1. Install PaddleSlim
|
||||||
|
|
||||||
|
```bash
|
||||||
|
git clone https://github.com/PaddlePaddle/PaddleSlim.git
|
||||||
|
cd Paddleslim
|
||||||
|
python setup.py install
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
### 2. Download Pretrain Model
|
||||||
|
PaddleOCR provides a series of trained [models](../../../doc/doc_en/models_list_en.md).
|
||||||
|
If the model to be quantified is not in the list, you need to follow the [Regular Training](../../../doc/doc_en/quickstart_en.md) method to get the trained model.
|
||||||
|
|
||||||
|
|
||||||
|
### 3. Quant-Aware Training
|
||||||
|
Quantization training includes offline quantization training and online quantization training.
|
||||||
|
Online quantization training is more effective. It is necessary to load the pre-training model.
|
||||||
|
After the quantization strategy is defined, the model can be quantified.
|
||||||
|
|
||||||
|
The code for quantization training is located in `slim/quantization/quant.py`. For example, to train a detection model, the training instructions are as follows:
|
||||||
|
```bash
|
||||||
|
python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights='your trained model' Global.save_model_dir=./output/quant_model
|
||||||
|
|
||||||
|
# download provided model
|
||||||
|
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar
|
||||||
|
tar -xf ch_ppocr_mobile_v2.0_det_train.tar
|
||||||
|
python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights=./ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.save_model_dir=./output/quant_model
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
### 4. Export inference model
|
||||||
|
|
||||||
|
After getting the model after pruning and finetuning we, can export it as inference_model for predictive deployment:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python deploy/slim/quantization/export_model.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=output/quant_model/best_accuracy Global.save_model_dir=./output/quant_inference_model
|
||||||
|
```
|
||||||
|
|
||||||
|
### 5. Deploy
|
||||||
|
The numerical range of the quantized model parameters derived from the above steps is still FP32, but the numerical range of the parameters is int8.
|
||||||
|
The derived model can be converted through the `opt tool` of PaddleLite.
|
||||||
|
|
||||||
|
For quantitative model deployment, please refer to [Mobile terminal model deployment](../../lite/readme_en.md)
|
|
@ -0,0 +1,118 @@
|
||||||
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
|
||||||
|
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
||||||
|
sys.path.append(__dir__)
|
||||||
|
sys.path.append(os.path.abspath(os.path.join(__dir__, '..', '..', '..')))
|
||||||
|
sys.path.append(
|
||||||
|
os.path.abspath(os.path.join(__dir__, '..', '..', '..', 'tools')))
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
import paddle
|
||||||
|
from paddle.jit import to_static
|
||||||
|
|
||||||
|
from ppocr.modeling.architectures import build_model
|
||||||
|
from ppocr.postprocess import build_post_process
|
||||||
|
from ppocr.utils.save_load import init_model
|
||||||
|
from ppocr.utils.logging import get_logger
|
||||||
|
from tools.program import load_config, merge_config, ArgsParser
|
||||||
|
from ppocr.metrics import build_metric
|
||||||
|
import tools.program as program
|
||||||
|
from paddleslim.dygraph.quant import QAT
|
||||||
|
from ppocr.data import build_dataloader
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
############################################################################################################
|
||||||
|
# 1. quantization configs
|
||||||
|
############################################################################################################
|
||||||
|
quant_config = {
|
||||||
|
# weight preprocess type, default is None and no preprocessing is performed.
|
||||||
|
'weight_preprocess_type': None,
|
||||||
|
# activation preprocess type, default is None and no preprocessing is performed.
|
||||||
|
'activation_preprocess_type': None,
|
||||||
|
# weight quantize type, default is 'channel_wise_abs_max'
|
||||||
|
'weight_quantize_type': 'channel_wise_abs_max',
|
||||||
|
# activation quantize type, default is 'moving_average_abs_max'
|
||||||
|
'activation_quantize_type': 'moving_average_abs_max',
|
||||||
|
# weight quantize bit num, default is 8
|
||||||
|
'weight_bits': 8,
|
||||||
|
# activation quantize bit num, default is 8
|
||||||
|
'activation_bits': 8,
|
||||||
|
# data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
|
||||||
|
'dtype': 'int8',
|
||||||
|
# window size for 'range_abs_max' quantization. default is 10000
|
||||||
|
'window_size': 10000,
|
||||||
|
# The decay coefficient of moving average, default is 0.9
|
||||||
|
'moving_rate': 0.9,
|
||||||
|
# for dygraph quantization, layers of type in quantizable_layer_type will be quantized
|
||||||
|
'quantizable_layer_type': ['Conv2D', 'Linear'],
|
||||||
|
}
|
||||||
|
FLAGS = ArgsParser().parse_args()
|
||||||
|
config = load_config(FLAGS.config)
|
||||||
|
merge_config(FLAGS.opt)
|
||||||
|
logger = get_logger()
|
||||||
|
# build post process
|
||||||
|
|
||||||
|
post_process_class = build_post_process(config['PostProcess'],
|
||||||
|
config['Global'])
|
||||||
|
|
||||||
|
# build model
|
||||||
|
# for rec algorithm
|
||||||
|
if hasattr(post_process_class, 'character'):
|
||||||
|
char_num = len(getattr(post_process_class, 'character'))
|
||||||
|
config['Architecture']["Head"]['out_channels'] = char_num
|
||||||
|
model = build_model(config['Architecture'])
|
||||||
|
|
||||||
|
# get QAT model
|
||||||
|
quanter = QAT(config=quant_config)
|
||||||
|
quanter.quantize(model)
|
||||||
|
|
||||||
|
init_model(config, model, logger)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
# build metric
|
||||||
|
eval_class = build_metric(config['Metric'])
|
||||||
|
|
||||||
|
# build dataloader
|
||||||
|
valid_dataloader = build_dataloader(config, 'Eval', device, logger)
|
||||||
|
|
||||||
|
# start eval
|
||||||
|
metirc = program.eval(model, valid_dataloader, post_process_class,
|
||||||
|
eval_class)
|
||||||
|
logger.info('metric eval ***************')
|
||||||
|
for k, v in metirc.items():
|
||||||
|
logger.info('{}:{}'.format(k, v))
|
||||||
|
|
||||||
|
save_path = '{}/inference'.format(config['Global']['save_inference_dir'])
|
||||||
|
infer_shape = [3, 32, 100] if config['Architecture'][
|
||||||
|
'model_type'] != "det" else [3, 640, 640]
|
||||||
|
|
||||||
|
quanter.save_quantized_model(
|
||||||
|
model,
|
||||||
|
save_path,
|
||||||
|
input_spec=[
|
||||||
|
paddle.static.InputSpec(
|
||||||
|
shape=[None] + infer_shape, dtype='float32')
|
||||||
|
])
|
||||||
|
logger.info('inference QAT model is saved to {}'.format(save_path))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
config, device, logger, vdl_writer = program.preprocess()
|
||||||
|
main()
|
|
@ -0,0 +1,166 @@
|
||||||
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from __future__ import division
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
|
||||||
|
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
||||||
|
sys.path.append(__dir__)
|
||||||
|
sys.path.append(os.path.abspath(os.path.join(__dir__, '..', '..', '..')))
|
||||||
|
sys.path.append(
|
||||||
|
os.path.abspath(os.path.join(__dir__, '..', '..', '..', 'tools')))
|
||||||
|
|
||||||
|
import yaml
|
||||||
|
import paddle
|
||||||
|
import paddle.distributed as dist
|
||||||
|
|
||||||
|
paddle.seed(2)
|
||||||
|
|
||||||
|
from ppocr.data import build_dataloader
|
||||||
|
from ppocr.modeling.architectures import build_model
|
||||||
|
from ppocr.losses import build_loss
|
||||||
|
from ppocr.optimizer import build_optimizer
|
||||||
|
from ppocr.postprocess import build_post_process
|
||||||
|
from ppocr.metrics import build_metric
|
||||||
|
from ppocr.utils.save_load import init_model
|
||||||
|
import tools.program as program
|
||||||
|
from paddleslim.dygraph.quant import QAT
|
||||||
|
|
||||||
|
dist.get_world_size()
|
||||||
|
|
||||||
|
|
||||||
|
class PACT(paddle.nn.Layer):
|
||||||
|
def __init__(self):
|
||||||
|
super(PACT, self).__init__()
|
||||||
|
alpha_attr = paddle.ParamAttr(
|
||||||
|
name=self.full_name() + ".pact",
|
||||||
|
initializer=paddle.nn.initializer.Constant(value=20),
|
||||||
|
learning_rate=1.0,
|
||||||
|
regularizer=paddle.regularizer.L2Decay(2e-5))
|
||||||
|
|
||||||
|
self.alpha = self.create_parameter(
|
||||||
|
shape=[1], attr=alpha_attr, dtype='float32')
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
out_left = paddle.nn.functional.relu(x - self.alpha)
|
||||||
|
out_right = paddle.nn.functional.relu(-self.alpha - x)
|
||||||
|
x = x - out_left + out_right
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
quant_config = {
|
||||||
|
# weight preprocess type, default is None and no preprocessing is performed.
|
||||||
|
'weight_preprocess_type': None,
|
||||||
|
# activation preprocess type, default is None and no preprocessing is performed.
|
||||||
|
'activation_preprocess_type': None,
|
||||||
|
# weight quantize type, default is 'channel_wise_abs_max'
|
||||||
|
'weight_quantize_type': 'channel_wise_abs_max',
|
||||||
|
# activation quantize type, default is 'moving_average_abs_max'
|
||||||
|
'activation_quantize_type': 'moving_average_abs_max',
|
||||||
|
# weight quantize bit num, default is 8
|
||||||
|
'weight_bits': 8,
|
||||||
|
# activation quantize bit num, default is 8
|
||||||
|
'activation_bits': 8,
|
||||||
|
# data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
|
||||||
|
'dtype': 'int8',
|
||||||
|
# window size for 'range_abs_max' quantization. default is 10000
|
||||||
|
'window_size': 10000,
|
||||||
|
# The decay coefficient of moving average, default is 0.9
|
||||||
|
'moving_rate': 0.9,
|
||||||
|
# for dygraph quantization, layers of type in quantizable_layer_type will be quantized
|
||||||
|
'quantizable_layer_type': ['Conv2D', 'Linear'],
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def main(config, device, logger, vdl_writer):
|
||||||
|
# init dist environment
|
||||||
|
if config['Global']['distributed']:
|
||||||
|
dist.init_parallel_env()
|
||||||
|
|
||||||
|
global_config = config['Global']
|
||||||
|
|
||||||
|
# build dataloader
|
||||||
|
train_dataloader = build_dataloader(config, 'Train', device, logger)
|
||||||
|
if config['Eval']:
|
||||||
|
valid_dataloader = build_dataloader(config, 'Eval', device, logger)
|
||||||
|
else:
|
||||||
|
valid_dataloader = None
|
||||||
|
|
||||||
|
# build post process
|
||||||
|
post_process_class = build_post_process(config['PostProcess'],
|
||||||
|
global_config)
|
||||||
|
|
||||||
|
# build model
|
||||||
|
# for rec algorithm
|
||||||
|
if hasattr(post_process_class, 'character'):
|
||||||
|
char_num = len(getattr(post_process_class, 'character'))
|
||||||
|
config['Architecture']["Head"]['out_channels'] = char_num
|
||||||
|
model = build_model(config['Architecture'])
|
||||||
|
|
||||||
|
# prepare to quant
|
||||||
|
quanter = QAT(config=quant_config, act_preprocess=PACT)
|
||||||
|
quanter.quantize(model)
|
||||||
|
|
||||||
|
if config['Global']['distributed']:
|
||||||
|
model = paddle.DataParallel(model)
|
||||||
|
|
||||||
|
# build loss
|
||||||
|
loss_class = build_loss(config['Loss'])
|
||||||
|
|
||||||
|
# build optim
|
||||||
|
optimizer, lr_scheduler = build_optimizer(
|
||||||
|
config['Optimizer'],
|
||||||
|
epochs=config['Global']['epoch_num'],
|
||||||
|
step_each_epoch=len(train_dataloader),
|
||||||
|
parameters=model.parameters())
|
||||||
|
|
||||||
|
# build metric
|
||||||
|
eval_class = build_metric(config['Metric'])
|
||||||
|
# load pretrain model
|
||||||
|
pre_best_model_dict = init_model(config, model, logger, optimizer)
|
||||||
|
|
||||||
|
logger.info('train dataloader has {} iters, valid dataloader has {} iters'.
|
||||||
|
format(len(train_dataloader), len(valid_dataloader)))
|
||||||
|
# start train
|
||||||
|
program.train(config, train_dataloader, valid_dataloader, device, model,
|
||||||
|
loss_class, optimizer, lr_scheduler, post_process_class,
|
||||||
|
eval_class, pre_best_model_dict, logger, vdl_writer)
|
||||||
|
|
||||||
|
|
||||||
|
def test_reader(config, device, logger):
|
||||||
|
loader = build_dataloader(config, 'Train', device, logger)
|
||||||
|
import time
|
||||||
|
starttime = time.time()
|
||||||
|
count = 0
|
||||||
|
try:
|
||||||
|
for data in loader():
|
||||||
|
count += 1
|
||||||
|
if count % 1 == 0:
|
||||||
|
batch_time = time.time() - starttime
|
||||||
|
starttime = time.time()
|
||||||
|
logger.info("reader: {}, {}, {}".format(
|
||||||
|
count, len(data[0]), batch_time))
|
||||||
|
except Exception as e:
|
||||||
|
logger.info(e)
|
||||||
|
logger.info("finish reader: {}, Success!".format(count))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
config, device, logger, vdl_writer = program.preprocess(is_train=True)
|
||||||
|
main(config, device, logger, vdl_writer)
|
||||||
|
# test_reader(config, device, logger)
|
Loading…
Reference in New Issue