diff --git a/tools/infer/predict_cls.py b/tools/infer/predict_cls.py index 420213ee..3bda7d7d 100755 --- a/tools/infer/predict_cls.py +++ b/tools/infer/predict_cls.py @@ -39,7 +39,6 @@ class TextClassifier(object): self.cls_image_shape = [int(v) for v in args.cls_image_shape.split(",")] self.cls_batch_num = args.cls_batch_num self.cls_thresh = args.cls_thresh - self.use_zero_copy_run = args.use_zero_copy_run postprocess_params = { 'name': 'ClsPostProcess', "label_list": args.label_list, @@ -99,12 +98,8 @@ class TextClassifier(object): norm_img_batch = norm_img_batch.copy() starttime = time.time() - if self.use_zero_copy_run: - self.input_tensor.copy_from_cpu(norm_img_batch) - self.predictor.zero_copy_run() - else: - norm_img_batch = fluid.core.PaddleTensor(norm_img_batch) - self.predictor.run([norm_img_batch]) + self.input_tensor.copy_from_cpu(norm_img_batch) + self.predictor.run() prob_out = self.output_tensors[0].copy_to_cpu() cls_result = self.postprocess_op(prob_out) elapse += time.time() - starttime @@ -143,10 +138,11 @@ def main(args): "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ") exit() for ino in range(len(img_list)): - logger.info("Predicts of {}:{}".format(valid_image_file_list[ino], cls_res[ - ino])) + logger.info("Predicts of {}:{}".format(valid_image_file_list[ino], + cls_res[ino])) logger.info("Total predict time for {} images, cost: {:.3f}".format( len(img_list), predict_time)) + if __name__ == "__main__": main(utility.parse_args()) diff --git a/tools/infer/predict_det.py b/tools/infer/predict_det.py index fe772991..ad9cbf57 100755 --- a/tools/infer/predict_det.py +++ b/tools/infer/predict_det.py @@ -37,7 +37,6 @@ class TextDetector(object): def __init__(self, args): self.args = args self.det_algorithm = args.det_algorithm - self.use_zero_copy_run = args.use_zero_copy_run pre_process_list = [{ 'DetResizeForTest': { 'limit_side_len': args.det_limit_side_len, @@ -72,7 +71,9 @@ class TextDetector(object): postprocess_params["nms_thresh"] = args.det_east_nms_thresh elif self.det_algorithm == "SAST": pre_process_list[0] = { - 'DetResizeForTest': {'resize_long': args.det_limit_side_len} + 'DetResizeForTest': { + 'resize_long': args.det_limit_side_len + } } postprocess_params['name'] = 'SASTPostProcess' postprocess_params["score_thresh"] = args.det_sast_score_thresh @@ -161,12 +162,8 @@ class TextDetector(object): img = img.copy() starttime = time.time() - if self.use_zero_copy_run: - self.input_tensor.copy_from_cpu(img) - self.predictor.zero_copy_run() - else: - im = paddle.fluid.core.PaddleTensor(img) - self.predictor.run([im]) + self.input_tensor.copy_from_cpu(img) + self.predictor.run() outputs = [] for output_tensor in self.output_tensors: output = output_tensor.copy_to_cpu() diff --git a/tools/infer/predict_rec.py b/tools/infer/predict_rec.py index c615fa0d..54082a50 100755 --- a/tools/infer/predict_rec.py +++ b/tools/infer/predict_rec.py @@ -39,7 +39,6 @@ class TextRecognizer(object): self.character_type = args.rec_char_type self.rec_batch_num = args.rec_batch_num self.rec_algorithm = args.rec_algorithm - self.use_zero_copy_run = args.use_zero_copy_run postprocess_params = { 'name': 'CTCLabelDecode', "character_type": args.rec_char_type, @@ -101,12 +100,8 @@ class TextRecognizer(object): norm_img_batch = np.concatenate(norm_img_batch) norm_img_batch = norm_img_batch.copy() starttime = time.time() - if self.use_zero_copy_run: - self.input_tensor.copy_from_cpu(norm_img_batch) - self.predictor.zero_copy_run() - else: - norm_img_batch = fluid.core.PaddleTensor(norm_img_batch) - self.predictor.run([norm_img_batch]) + self.input_tensor.copy_from_cpu(norm_img_batch) + self.predictor.run() outputs = [] for output_tensor in self.output_tensors: output = output_tensor.copy_to_cpu() @@ -145,8 +140,8 @@ def main(args): "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ") exit() for ino in range(len(img_list)): - logger.info("Predicts of {}:{}".format(valid_image_file_list[ino], rec_res[ - ino])) + logger.info("Predicts of {}:{}".format(valid_image_file_list[ino], + rec_res[ino])) logger.info("Total predict time for {} images, cost: {:.3f}".format( len(img_list), predict_time)) diff --git a/tools/infer/utility.py b/tools/infer/utility.py index c3d294e6..39c045de 100755 --- a/tools/infer/utility.py +++ b/tools/infer/utility.py @@ -20,8 +20,7 @@ import numpy as np import json from PIL import Image, ImageDraw, ImageFont import math -from paddle.fluid.core import AnalysisConfig -from paddle.fluid.core import create_paddle_predictor +from paddle import inference def parse_args(): @@ -83,8 +82,6 @@ def parse_args(): parser.add_argument("--cls_thresh", type=float, default=0.9) parser.add_argument("--enable_mkldnn", type=str2bool, default=False) - parser.add_argument("--use_zero_copy_run", type=str2bool, default=False) - parser.add_argument("--use_pdserving", type=str2bool, default=False) return parser.parse_args() @@ -110,14 +107,14 @@ def create_predictor(args, mode, logger): logger.info("not find params file path {}".format(params_file_path)) sys.exit(0) - config = AnalysisConfig(model_file_path, params_file_path) + config = inference.Config(model_file_path, params_file_path) if args.use_gpu: config.enable_use_gpu(args.gpu_mem, 0) if args.use_tensorrt: config.enable_tensorrt_engine( - precision_mode=AnalysisConfig.Precision.Half - if args.use_fp16 else AnalysisConfig.Precision.Float32, + precision_mode=inference.PrecisionType.Half + if args.use_fp16 else inference.PrecisionType.Float32, max_batch_size=args.max_batch_size) else: config.disable_gpu() @@ -130,20 +127,18 @@ def create_predictor(args, mode, logger): # config.enable_memory_optim() config.disable_glog_info() - if args.use_zero_copy_run: - config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass") - config.switch_use_feed_fetch_ops(False) - else: - config.switch_use_feed_fetch_ops(True) + config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass") + config.switch_use_feed_fetch_ops(False) - predictor = create_paddle_predictor(config) + # create predictor + predictor = inference.create_predictor(config) input_names = predictor.get_input_names() for name in input_names: - input_tensor = predictor.get_input_tensor(name) + input_tensor = predictor.get_input_handle(name) output_names = predictor.get_output_names() output_tensors = [] for output_name in output_names: - output_tensor = predictor.get_output_tensor(output_name) + output_tensor = predictor.get_output_handle(output_name) output_tensors.append(output_tensor) return predictor, input_tensor, output_tensors