inference adaptation 2.0

This commit is contained in:
WenmuZhou 2020-12-21 17:10:00 +08:00
parent 7efa3975c2
commit 59af7359be
4 changed files with 24 additions and 41 deletions

View File

@ -39,7 +39,6 @@ class TextClassifier(object):
self.cls_image_shape = [int(v) for v in args.cls_image_shape.split(",")]
self.cls_batch_num = args.cls_batch_num
self.cls_thresh = args.cls_thresh
self.use_zero_copy_run = args.use_zero_copy_run
postprocess_params = {
'name': 'ClsPostProcess',
"label_list": args.label_list,
@ -99,12 +98,8 @@ class TextClassifier(object):
norm_img_batch = norm_img_batch.copy()
starttime = time.time()
if self.use_zero_copy_run:
self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.zero_copy_run()
else:
norm_img_batch = fluid.core.PaddleTensor(norm_img_batch)
self.predictor.run([norm_img_batch])
self.predictor.run()
prob_out = self.output_tensors[0].copy_to_cpu()
cls_result = self.postprocess_op(prob_out)
elapse += time.time() - starttime
@ -143,10 +138,11 @@ def main(args):
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
exit()
for ino in range(len(img_list)):
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino], cls_res[
ino]))
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
cls_res[ino]))
logger.info("Total predict time for {} images, cost: {:.3f}".format(
len(img_list), predict_time))
if __name__ == "__main__":
main(utility.parse_args())

View File

@ -37,7 +37,6 @@ class TextDetector(object):
def __init__(self, args):
self.args = args
self.det_algorithm = args.det_algorithm
self.use_zero_copy_run = args.use_zero_copy_run
pre_process_list = [{
'DetResizeForTest': {
'limit_side_len': args.det_limit_side_len,
@ -72,7 +71,9 @@ class TextDetector(object):
postprocess_params["nms_thresh"] = args.det_east_nms_thresh
elif self.det_algorithm == "SAST":
pre_process_list[0] = {
'DetResizeForTest': {'resize_long': args.det_limit_side_len}
'DetResizeForTest': {
'resize_long': args.det_limit_side_len
}
}
postprocess_params['name'] = 'SASTPostProcess'
postprocess_params["score_thresh"] = args.det_sast_score_thresh
@ -161,12 +162,8 @@ class TextDetector(object):
img = img.copy()
starttime = time.time()
if self.use_zero_copy_run:
self.input_tensor.copy_from_cpu(img)
self.predictor.zero_copy_run()
else:
im = paddle.fluid.core.PaddleTensor(img)
self.predictor.run([im])
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()

View File

@ -39,7 +39,6 @@ class TextRecognizer(object):
self.character_type = args.rec_char_type
self.rec_batch_num = args.rec_batch_num
self.rec_algorithm = args.rec_algorithm
self.use_zero_copy_run = args.use_zero_copy_run
postprocess_params = {
'name': 'CTCLabelDecode',
"character_type": args.rec_char_type,
@ -101,12 +100,8 @@ class TextRecognizer(object):
norm_img_batch = np.concatenate(norm_img_batch)
norm_img_batch = norm_img_batch.copy()
starttime = time.time()
if self.use_zero_copy_run:
self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.zero_copy_run()
else:
norm_img_batch = fluid.core.PaddleTensor(norm_img_batch)
self.predictor.run([norm_img_batch])
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
@ -145,8 +140,8 @@ def main(args):
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
exit()
for ino in range(len(img_list)):
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino], rec_res[
ino]))
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
rec_res[ino]))
logger.info("Total predict time for {} images, cost: {:.3f}".format(
len(img_list), predict_time))

View File

@ -20,8 +20,7 @@ import numpy as np
import json
from PIL import Image, ImageDraw, ImageFont
import math
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import create_paddle_predictor
from paddle import inference
def parse_args():
@ -83,8 +82,6 @@ def parse_args():
parser.add_argument("--cls_thresh", type=float, default=0.9)
parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
parser.add_argument("--use_zero_copy_run", type=str2bool, default=False)
parser.add_argument("--use_pdserving", type=str2bool, default=False)
return parser.parse_args()
@ -110,14 +107,14 @@ def create_predictor(args, mode, logger):
logger.info("not find params file path {}".format(params_file_path))
sys.exit(0)
config = AnalysisConfig(model_file_path, params_file_path)
config = inference.Config(model_file_path, params_file_path)
if args.use_gpu:
config.enable_use_gpu(args.gpu_mem, 0)
if args.use_tensorrt:
config.enable_tensorrt_engine(
precision_mode=AnalysisConfig.Precision.Half
if args.use_fp16 else AnalysisConfig.Precision.Float32,
precision_mode=inference.PrecisionType.Half
if args.use_fp16 else inference.PrecisionType.Float32,
max_batch_size=args.max_batch_size)
else:
config.disable_gpu()
@ -130,20 +127,18 @@ def create_predictor(args, mode, logger):
# config.enable_memory_optim()
config.disable_glog_info()
if args.use_zero_copy_run:
config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
config.switch_use_feed_fetch_ops(False)
else:
config.switch_use_feed_fetch_ops(True)
predictor = create_paddle_predictor(config)
# create predictor
predictor = inference.create_predictor(config)
input_names = predictor.get_input_names()
for name in input_names:
input_tensor = predictor.get_input_tensor(name)
input_tensor = predictor.get_input_handle(name)
output_names = predictor.get_output_names()
output_tensors = []
for output_name in output_names:
output_tensor = predictor.get_output_tensor(output_name)
output_tensor = predictor.get_output_handle(output_name)
output_tensors.append(output_tensor)
return predictor, input_tensor, output_tensors